Курсовая работа: Разработка программы факультативного курса по теории вероятностей в курсе математики 8 класса

Пример 1. Пусть в урне находятся 2 белых и 2 черных шара. Пусть собы­тие А - вынут белый шар. Очевидно, Р(А) = . После первого испытания вынутый шар кладется обратно в урну, шары перемешиваются и снова вынимается шар. Событие В - во втором испытании вынут белый шар – такжеимеет вероятность Р(В) = , т.е. события А и В- независимые.

Предположим теперь, что вынутый шар в первом испытании не кладется обратно в урну. Тогда если произошло событие А, т.е. в первом испытаниивынут белый шар, то вероятность события В уменьшается Р(В) = ,если в первом испытании был вынут черный шар, то вероятность события В увеличивается Р(В) = .

Итак, вероятность события В существенно зависит от того, произошло или не произошло событие А, в таких случаях события А и В - зависимые.

Пусть А и В - зависимые события. Условной вероятностью РА (В) события В называют вероятность события В, найденную в предположении, что событие А уже наступило.

Итак, в примере 1 РА (В) = .

Заметим, что если события А и В независимы, то РА (В )= Р(В).

Теорема 1. Вероятность произведения двух зависимых событий А и В равна произведению вероятности одного из них на условную вероятность другого, найденную в предположении, что первое событие уже наступило:

P(AB)= Р(А)РА (В). (2)

Доказательство.

Пусть из всего числа nэлементарных событий k благоприятствуют событию А и пусть из этих k событий l благоприятствуют событию В, а значит, и событию АВ. Тогда Р(АВ)= =.= Р(А)РА (В), что и доказывает искомое равенство (2).

Замечание. Применив формулу (2) к событию ВА, получим

Р(ВА) = Р(В)РВ (А). (3)

Так как АВ = ВА, то, сравнивая (2) и (3), получаем, что

Р(А)РА (В) = Р(В)РВ (А).

Пример 2. В условиях примера 1 берем тот случай, когда вынутый шар в первом испытании не кладется обратно в урну. Поставим следующий вопрос: какова вероятность вынуть первый и второй разы белые шары? По формуле (2) имеем


Теорема 2. Вероятность произведения двух независимых событий А и В равна произведению вероятностей этих событий:

(4)

Р(ВА) = Р(А)Р(В).

Действительно, если А и В - независимые события, то РА (В) = = Р(В) и формула (2) превращается в формулу (4).

Пример 3. Вероятность выживания одного организма в течение 20 мин Р = 0,7. В пробирке с благоприятными для существования этих организмов условиями находятся только что родившиеся 2 организма. Какова вероятность того, что через 20 минут они будут живы?

Пусть событие А - первый организм жив через 20 мин, событие В - второй организм жив через 20 мин. Будем считать, что между организмами нет внутривидовой конкуренции, т.е. события А и В независимы. Событие, что оба организма живы, есть событие АВ. По теореме 2 получаем Р(АВ) = 0,7 ∙ 0,7 = 0,49 [7,115].

Теорема сложения вероятностей совместимых событий

Теорема. Вероятность суммы двух совместимых событий А и В равна сумме вероятностей этих событий минус вероятность их произведения

Р(А + В) = Р(А) + Р(В) - Р(АВ). (5)

Доказательство. Пусть из всего числа n элементарных событий k благоприятствуют событию А, l - событию В и m - одновременно событиям А и В. Отсюда событию А + В благоприятствуют к + 1 - m элементарных событий. Тогда


Р(А+В)= = Р(А) + Р(В) - Р(АВ)

Замечание. Если события А и В несовместимы, то их произведение АВ есть невозможное событие и, следовательно, Р(АВ) = 0, т.е. формула (1) является частным случаем формулы (5).

Пример. В посевах пшеницы на делянке имеется 95% здоровых растений. Выбирают два растения. Определить вероятность того, что среди них хотя бы одно окажется здоровым.

Введем обозначения для событий:

К-во Просмотров: 284
Бесплатно скачать Курсовая работа: Разработка программы факультативного курса по теории вероятностей в курсе математики 8 класса