Курсовая работа: Разработка системы непрерывного управления скоростью асинхронного двигателя с фазным ротором с помощью импульсно-ключевого регулятора добавочного сопротивления роторной цепи
Отношения сопротивлений:
Сопротивление статора:
Ом
Приведенное сопротивление ротора:
Ом
Индуктивное сопротивление короткого замыкания:
Ом
Так как Xk=X1 +X2 ’, причем X1 »X2 ’ примем: X1 =0.68 Ом, X2 ’=0.7 Ом.
Рассчитаем коэффициент приведения сопротивления Кr :
Определяем сопротивления ротора:
Ом
О
Исходя из задания, силовой канал представляем следующим образом (рис.1):
рис.1. На представленной схеме: М – асинхронный двигатель с фазным ротором; BR – тахогенератор; U1 – трехфазный мостовой выпрямитель, включенный в цепь ротора; ДТ – датчик тока; Rd – добавочное сопротивление, шунтированное ключом с частотой коммутации fk=3кГц; К – коммутатор; СУ – система управления.
Дополнительный резистор Rd включен в цепь ротора через неуправляемый выпрямитель U1. Коммутатор (ключ) К периодически закорачивает сопротивление Rd, причем скважность g= tвкл/Тком может изменяться внешним сигналом Uzc в пределах от 0 до 1. При g=0 т.е. при не включенном коммутаторе, сопротивление роторной цепи составит Rr+Rd, что определит механическую характеристику 2 (рис.2). При g=1 (ключ включен постоянно) Rd=0 и двигатель работает на характеристике 1, близкой к естественной (рис.2). Плавное изменение величины скважности в пределах 0< g<1 обеспечивает семейство характеристик, расположенные между характеристиками 1 и 2. Величина g в данном случае зависит от величины тока и скорости. Импульсно-ключевой способ управления АД имеет ряд преимуществ: Высокое быстродействие; Переход с характеристики на характеристику при переходных процессах плавный, без скачков тока и момента, что повышает надежность системы.
Наряду с этими достоинствами данный способ имеет очень существенный недостаток: Регулирование скорости осуществляется путем повышения скольжения, что приводит к увеличению потерь. Поэтому ИКР следует применять только в старых электроприводах в качестве их модернизации, и то только тогда, когда двигатель работает на низких скоростях непродолжительное время.
2. Расчет характеристик асинхронного двигателя
По уточненной формуле Клосса рассчитываем значения момента и скорости:
Результаты вычислений сведены в таблицу 1.
Тб.1
S | 1 | 0.9 | 0.8 | 0.6 | 0.5 | 0.4 | 0.3 | 0.285 | 0.25 | 0.2 |
W рад/с | 0 | 10.5 | 20.9 | 41.9 | 52.4 | 62.8 | 73.3 | 73.4 | 78.5 | 83.8 |
M Нм | 259 | 282.4 | 308.8 | 375.1 | 414.6 | 453.8 | 478.2 | 480 | 477.6 | 450.1 |
S | 0.1 | 0.09 | 0.05 | 0.045 | 0 |
W рад/с | 94.2 | 95.3 | 99.5 | 100 | 104.7 |
M Нм | 301.2 | 276.5 | 156.5 | 159 | 0 |
Естественная характеристика представлена на рис.2
Определим рабочую область электропривода:
Скорость: Wo(0.05…0.5)=5.235¸52.35 рад/с;
Момент: Мн(0.2…1)=30¸150 рад/с;
На рис.2 эта область выделена штриховкой. В режиме ИКР двигатель работает на семействе характеристик с постоянно меняющейся жесткостью (из-за постоянного изменения сопротивления Rd ). Максимальное значение сопротивления соответствует точке А, рассчитываем его величину по формуле:
,