Курсовая работа: Разработка системы регулирования температуры смазочного масла турбины
4. Дисперсия случайного процесса
, (2.5)
или . (2.6)
5. Корреляционная (автокорреляционная) функция Rxx (t1 ,t2 ) . Корреляционная функция это математическое ожидание произведений двух значений одного и того же сигнала, сдвинутых по времени.
. (2.7)
6. Взаимная корреляционная функция Rxy (t1 ,t2 ) . Взаимная корреляционная функция это математическое ожидание произведений двух сигналов один из которых сдвинут относительно другого по времени.
. (2.8)
Точное определение этих характеристик невозможно, так как неизвестен вид закона распределения и конечно число реализаций случайного процесса. Поэтому в реальных условиях эти характеристики вычисляют приблизительно, оценивая их с какой-то погрешностью.
Оценка характеристик случайных процессов проводится на основе роинятия гипотез о стационарноси и эргодичности случайного процесса.
Случайный процесс называют стационарным , если характеризующая его функция распределения не зависит от времени. Отсюда следует, что от времени не будут зависеть и все характеристики случайного процесса. Условие стационарнрсти значительно упрощает вычисление характеристик случайных процессов, так как в выражениях (2.1) - (2.8) исчезает аргумент времени. Однако и вэтом случае для вычисления характеристик необходимо достаточно большое количество независимых реализаций случайного процесса (ансамбль реализаций).
Эргодическая гипотеза позволяет заменить ансамбль реализацй одной реализацией снятой за достаточно продолжительный интервал времени. Согласно эргодической гипотезе средние значения случайного сигнала по множеству и времени совпвдают.
. (2.9)
Тогда для случайных стационарных эргодических процессов оценки их характеристик (2.1) - (2.8) с учетом конечности времени наблюдения Т , записываются в следующем виде.
1. Оценка математического ожидания
. (2.10)
2. Оценка дисперсии
, (2.11)
или . (2.12)
3. Оценка корреляционнгой функции
, (2.13)
где - центрированный случайный сигнал.
Корреляционную функцию центрированного сигнала еще называют ковариационной или автоковариационной функцией.
4. Спектральная плотность мощности , связанная с корреляционной функцией преобразованием Фуре.
. (2.14)
Для получения приемлемой точности оценох характеристик случайных процессов длительность реализации процесса по которой вычисляются оценки должна превышать интервал корреляции. Интервал корреляции ето значение аргумента корреляционной функции начиная с которого все ее последующие значения не превышают .
Более подробно о вычислении характеристик случайных процессов и их оценок можно познакомиться в специальной литературе [8, 12, 23, 25, 27, 31, 32, 38, 49, 54, 59, 63, 77, 99].
На рис.2.1- 2.4 приведены статистические характеристики временных трендов системы.
Рис. 2.1. Временные тренды входного и выходного сигналов