Курсовая работа: Решение дифференциальных уравнений. Обзор
При решении задачи с шагом h=0.1 назовем шаг h2, аргумент - x2, а решение - y2.
Определим начальное условие
Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей позиции в панели Matrix или в панели Calculator
Определим шаг формулы Эйлера - шаг интегрирования
Определим по формулам Эйлера значения приближенного решения в узлах сетки
Выведем в рабочий документ вычисленные значения решения. Для сравнения рядом выведены значения решения, вычисленные с большим шагом
Построим график решения y2(x2)
Построим на одном графике оба приближенные решения
Для того чтобы одновременно построить графики нескольких функций от разных аргументов, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции у оси абсцисс имя первого аргумента, запятую, имя второго аргумента, и т.д., разделяя имена аргументов запятой.
Аналогично, в позиции возле оси ординат введите имя функции первого аргумента, запятую, имя функции второго аргумента и т.д.разделяя имена функций запятой.
Когда функции определены, щелкните по рабочему документу вне поля графиков.
2.3 Метод Рунге – Кутты
Методом Рунге-Кутты четвертого порядкаточности называют одношаговый метод, относящийся к широкому классу методов Рунге-Кутты. В этом методе величиныyi+ 1 вычисляются по следующим формулам:
yi +1 =yi +h(k1 + 2k2 + 2k3 +k4 )/6 , i= 0, 1, ...
k1 =f(xi ,yi ),