Курсовая работа: Решение и постоптимальный анализ задачи линейного программирования

Для задачи на m ах:

Базисные переменные:

Для базисной переменной диапазон устойчивости, в котором может изменяться коэффициент Ci, оставляя текущее решение оптимальным, задаётся выражением: Ci + ∆

где dj - относительная оценка переменной xj в текущем оптимальном решении.

Eсли отсутствуют соответственно.

Не базисные переменные:

Для не базисной переменной диапазон устойчивости, в котором может изменятся коэффициент Сi оставляя текущее решение оптимальным, задаётся выражением:

Для задачи на min : Базисные переменные:

Для базисной переменной диапазон устойчивости, в котором может изменяться коэффициент Сi , оставляя текущее решение оптимальным, задаётся выражением: Сi + ∆

He базисные переменные:

Для не базисной переменной диапазон устойчивости, в котором может изменятся коэффициент С; оставляя текущее решение оптимальным, задаётся выражением:

( dN ) <<

2. Содержательная постановка задачи

Вариант 3/2

Транспортная компания для перевозки инжира из Багдада в Мекку использует мулов, одногорбых и двугорбых верблюдов. Двугорбый верблюд может перевезти - 1000 фунтов, одногорбый – 500 фунтов, а мул – 300 фунтов. За один переход двугорбый верблюд потребляет 2 кипы сена и 40 галлонов воды. Одногорбый верблюд потребляет 2 кипы сена и 30 галлонов воды. Мул – 1 кипу сена и 10 галлонов воды. Пункты снабжения компании, расположенные в различных оазисах вдоль пути, могут выдать не более 900 галлонов воды и 35 кип сена. Верблюды и мулы арендуются у пастуха близ Багдада, арендная плата равна 12 пиастрам за двугорбого верблюда, 5 пиастрам за одногорбого и 4 пиастрам за мула.

Если компания должна перевести 8000 фунтов инжира из Багдада в Мекку, сколько надо использовать верблюдов и мулов для минимизации арендной платы пастуху?


3. Математическая постановка задачи

Переменные:

Х1 - Двугорбый верблюд

Х2 - Одногорбый верблюд

Х3 – Мул

Целевая функция – минимизация арендной платы.

Z min = 12Х1 + 5Х2+ 4Х3

Ограничения:

Использования ресурса «вода» не более 900 галлонов:

40Х1 + 30Х2+ 10Х3 < 900

Использования ресурса «сено» не более 35 кип:

3Х1 + 2Х2+ Х3 < 35

Компания должна перевести 8000 фунтов инжира:

1000Х1 + 500Х2 + 300Х3 =8000

Все переменные должны быть не отрицательны:

К-во Просмотров: 418
Бесплатно скачать Курсовая работа: Решение и постоптимальный анализ задачи линейного программирования