Курсовая работа: Решение и постоптимальный анализ задачи линейного программирования

ЦФ:

Zmin= 12X1 + 5X2 + 4X3

Ограничения:

40X1 + 30X2 + 10X3 < 900

3X1 + 2X2 + X3 < 35

1000X1 + 500X2 + 300X3 = 8000

X1, X2, X3 > 0

Приведем задачу к канонической форме и введём искусственные переменные:

Zmin = 12X1 + 5X2 + 4X3 + 0S1 + 0S2 – MR1

40X1 + 30X2 + 10X3 + 0S1 = 900

3X1 + 2X2 + X3 + 0S2 = 35

1000X1 + 500X2 + 300X3 + R1 = 8000

X1, X2, X3 > 0

R1 = – 1000X1 – 500X2 – 300X3 + 8000

Zmin = 12X1 + 5X2 + 4X3 + 0S1 + 0S2 – M (– 1000X1 – 500X2 – 300X3 + 8000) = (12 + 1000M) X1 + (5 + 500M) X2 + (4 + 300M) X3 – 8000M

Z + (–12 – 1000M) X1 + (–5 – 500M) X2 + (–4 – 300M) X3 = – 8000M

Составляем симплекс таблицу:

Шаг 0
БП X 1 X2 X3 S1 S2 R1 решение
S1 40 30 10 1 0 0 900
S2 3 2 1 0 1 0 35
R1 1000 500 300 0 0 1 8000
Z -1000M+12 -500M+5 -300M+4 0 0 0 -8000M
Шаг 1
S1 0 10 -2 1 0 -1/25 580
S2 0 1/2 1/10 0 1 -3/1000 11
X1 1 1/2 3/10 0 0 1/1000 8
Z 0 -1 2/5 0 0 M-3/250 -96
Шаг 2
S1 -20 0 -8 1 0 -3/50 420
S2 -1 0 -1/5 0 1 -1/250 3
X2 2 1 3/5 0 0 1/500 16
Z 2 0 1 0 0 M-1/100 -80

В итоге: Z = 80, X1 = 0, X2 = 16, X3 = 0

5. Постоптимальный анализ решения

5.1 Определения статуса и ценности ресурсов

Zmin= 12X1 + 5X2 + 4X3

40X1 + 30X2 + 10X3 + S1 = 900

3X1 + 2X2 + X3 + S2 = 35

1000X1 + 500X2 + 300X3 = 8000

Двойственная задача имеет вид:

ω max = 900Y1 + 35Y2 + 8000Y3

40Y1 + 3Y2 + 1000Y3 < 12 (X1)

30Y1 + 2Y2 + 500Y3 < 5 (X2)

10Y1 + 1Y2 + 300Y3 < 4 (X3)

Y1 < 0 (S1)

Y2 < 0 (S2)

К-во Просмотров: 416
Бесплатно скачать Курсовая работа: Решение и постоптимальный анализ задачи линейного программирования