Курсовая работа: Решение краевых задач в среде виртуальной гибридной машины

Метод сеток реализуется в том случае, когда частные производные, входящие в уравнение, заменяются в каждой точке заданной области конечно-разностными выражениями, полученными из значений искомого решения в окружающих точках. Количество уравнений в системе связано с шагом дискретизации временной и пространственных переменных и формой границы области решения. Число точек, попавших внутрь области решения, определяет число неизвестных и уравнений.

Метод прямых относится к случаю, когда одна из независимых переменных является временем (случай нестационарных задач) или когда одну из пространственных переменных (случай стационарных задач) пропорционально связывают со временем. Частные производные от независимых переменных, не связанных с временем, аппроксимируют конечными разностями. В результате, оставшиеся дискретными независимые переменные сочетанием своих значений определяют общее число дифференциальных уравнений, которые в общем случае являются краевыми.

Аппроксимирующие дифференциальные уравнения с краевыми условиями невозможно интегрировать как систему уравнений Коши. Линейная система краевых задач многократно решается с частными начальными условиями и по результатам решений краевые условия пересчитываются в начальные. Нелинейной системе для приближенного вычисления начальных условий потребуются итерационные процедуры, рассмотренные выше.

Математические модели, сформированные по методам сеток и прямых, могут быть решены методом математического моделирования с применением аналоговых или псевдо аналоговых операционных блоков, а также методом аналогий.

Метод аналогий (аналоговое моделирование) заключается в том, что для каждого уравнения математической модели подбирается физический объект, переменные состояния которого связаны таким же уравнением. В подавляющем большинстве случаев в качестве аналоговых объектов используются схемы с электрическими и электронными компонентами. Особенно простыми аналогами уравнений математических моделей являются уравнения электрических схем, полученные на основании законов Ома и Кирхгофа.

Итак, все рассмотренные методы используют конечно-разностную аппроксимацию, к рассмотрению которой мы переходим.

1.3 Конечные разности и аппроксимация производных

1.3.1 Определение конечных разностей

Конечная разность "вперед" для таблично заданной функции в i-той точке определяется выражением: , где функция задана, как функция целочисленного аргумента с единичным шагом по аргументу i.

Для аналитически заданной и протабулированной с постоянным шагом h функции f(x) определяющее соотношение имеет вид:

f(x) = f(x+h) - f(x)

Преобразование таблицы функции f(x) в функцию целочисленного аргумента g(i) осуществляют при помощи линейного соотношения между аргументами x и i : .

Повторные конечные разности n-го порядка в i-той точке для табличной функции g(i) определяются соотношением


Линейность конечно-разностного оператора позволяет ввести конечно-разностный оператор сдвига E=(1+) и многочлены от оператора с целыми коэффициентами, такие, как

и т.п.,

где должно рассматриваться в качестве оператора повторной разности k-го порядка .

Применение оператора сдвига к g(i) преобразует последнее в g(i+1) :

g(i+1) = Eg(i) = (1+)g(i)= g(i) + g(i).

Повторное применение оператора сдвига позволяет выразить значение ординаты функции g(i) в точке (i+n) через конечные разности различных порядков:

где - число сочетаний из n элементов по k ;

-

многочлен степени k от целой переменной n (), имеющий k сомножителей. При k=n .

Относительно начала координат (i=0 - начало таблицы) функция целочисленной переменной g(n) представляется разложением по многочленам различных степеней от 0 до n. Для больших степеней конечные разности равны нулю.

С другой стороны, так как , то

Таким образом, любая повторная конечная разность выражается взвешенной алгебраической суммой ординат табличной функции.

К-во Просмотров: 322
Бесплатно скачать Курсовая работа: Решение краевых задач в среде виртуальной гибридной машины