Курсовая работа: Решение краевых задач в среде виртуальной гибридной машины
Метод сеток реализуется в том случае, когда частные производные, входящие в уравнение, заменяются в каждой точке заданной области конечно-разностными выражениями, полученными из значений искомого решения в окружающих точках. Количество уравнений в системе связано с шагом дискретизации временной и пространственных переменных и формой границы области решения. Число точек, попавших внутрь области решения, определяет число неизвестных и уравнений.
Метод прямых относится к случаю, когда одна из независимых переменных является временем (случай нестационарных задач) или когда одну из пространственных переменных (случай стационарных задач) пропорционально связывают со временем. Частные производные от независимых переменных, не связанных с временем, аппроксимируют конечными разностями. В результате, оставшиеся дискретными независимые переменные сочетанием своих значений определяют общее число дифференциальных уравнений, которые в общем случае являются краевыми.
Аппроксимирующие дифференциальные уравнения с краевыми условиями невозможно интегрировать как систему уравнений Коши. Линейная система краевых задач многократно решается с частными начальными условиями и по результатам решений краевые условия пересчитываются в начальные. Нелинейной системе для приближенного вычисления начальных условий потребуются итерационные процедуры, рассмотренные выше.
Математические модели, сформированные по методам сеток и прямых, могут быть решены методом математического моделирования с применением аналоговых или псевдо аналоговых операционных блоков, а также методом аналогий.
Метод аналогий (аналоговое моделирование) заключается в том, что для каждого уравнения математической модели подбирается физический объект, переменные состояния которого связаны таким же уравнением. В подавляющем большинстве случаев в качестве аналоговых объектов используются схемы с электрическими и электронными компонентами. Особенно простыми аналогами уравнений математических моделей являются уравнения электрических схем, полученные на основании законов Ома и Кирхгофа.
Итак, все рассмотренные методы используют конечно-разностную аппроксимацию, к рассмотрению которой мы переходим.
1.3 Конечные разности и аппроксимация производных
1.3.1 Определение конечных разностей
Конечная разность "вперед" для таблично заданной функции в i-той точке определяется выражением: , где функция задана, как функция целочисленного аргумента с единичным шагом по аргументу i.
Для аналитически заданной и протабулированной с постоянным шагом h функции f(x) определяющее соотношение имеет вид:
f(x) = f(x+h) - f(x)
Преобразование таблицы функции f(x) в функцию целочисленного аргумента g(i) осуществляют при помощи линейного соотношения между аргументами x и i : .
Повторные конечные разности n-го порядка в i-той точке для табличной функции g(i) определяются соотношением
Линейность конечно-разностного оператора позволяет ввести конечно-разностный оператор сдвига E=(1+) и многочлены от оператора с целыми коэффициентами, такие, как
и т.п.,
где должно рассматриваться в качестве оператора повторной разности k-го порядка .
Применение оператора сдвига к g(i) преобразует последнее в g(i+1) :
g(i+1) = Eg(i) = (1+)g(i)= g(i) + g(i).
Повторное применение оператора сдвига позволяет выразить значение ординаты функции g(i) в точке (i+n) через конечные разности различных порядков:
где - число сочетаний из n элементов по k ;
-
многочлен степени k от целой переменной n (), имеющий k сомножителей. При k=n .
Относительно начала координат (i=0 - начало таблицы) функция целочисленной переменной g(n) представляется разложением по многочленам различных степеней от 0 до n. Для больших степеней конечные разности равны нулю.
С другой стороны, так как , то
Таким образом, любая повторная конечная разность выражается взвешенной алгебраической суммой ординат табличной функции.