Курсовая работа: Решение краевых задач в среде виртуальной гибридной машины
150, -12
Чтобы получить конечно-разностную модель дифференциального уравнения, необходимо сначала интервал или область решения разделить с постоянным шагом по осям координат на требуемое число подинтервалов и для каждой внутренней точки подставить аппроксимирующие выражения в заданное уравнение. После приведения подобных членов в каждом уравнении, получится система алгебраических уравнений при полной дискретизации всех независимых переменных или система дифференциальных уравнений - при неполной дискретизации. К полученным таким образом уравнениям добавляются соотношения или значения функции и ее производных в точках границы области.
В процессе формирования уравнений особое внимание необходимо обращать на замену производных конечно-разностными эквивалентами в приграничных точках. В выражениях последних должны отсутствовать неизвестные значения функции в точках, расположенных вне области интегрирования. Поэтому аппроксимирующие, выражения производных из таблиц 1-4 для точек у левой границы интервала берутся из верхних строчек, а для точек у правой границы - из нижних строчек.
2. КРАЕВАЯ ЗАДАЧА В ЧАСТНЫХ ПРОИЗВОДНЫХ
В качестве демонстрационной краевой нестационарной задачи возьмем задачу теплопроводности с непрерывным временем. На этой задаче удобно показывать как динамику нагрева объекта, так и установившееся распределение температурного поля.
2.1 Задача теплопроводности с непрерывным временем
Применение метода прямых рассмотрим на примере решения уравнения теплопроводности следующего вида:
,
которое описывает изменение температуры вдоль металлического стержня длиной в 1 метр (), вваренного своими концами в две металлические пластины с разными, постоянно поддерживаемыми на них температурами
и .
Начальное распределение температуры по длине будем задавать для внутренних точек как
.
Единичную длину стержня разобьем на 8 равных частей
()
и обозначим изменяющееся значение температуры в каждой точке через .
2.2 Вариант аппроксимации дифференциальными уравнениями
Применим трех точечную аппроксимацию частной производной второго порядка, воспользовавшись таблицей 2 из раздела 1.4. Для внутренних точек и для приграничных точек коэффициенты в аппроксимирующем выражении второй производной оказываются одинаковыми. Это позволяет для каждой внутренней точки, размеченного на 8 частей стержня, записать следующую систему дифференциальных уравнений первого порядка относительно скорости изменения температур в каждой точке:
Для получения числовых значений зададим конкретные величины. Так коэффициент В для теплоизолированного по боковой поверхности алюминиевого стержня равен теплопроводности этого материала, т.е. l=200 вт/(м×К).
Удвоенный квадрат шага по длине стержня равен 2´0.1252 =0.03125 м2 .
Вместо температуры введем относительную переменную, разделив левую и правую части на 100°:
.
Если все коэффициенты перенести в правую часть и, вычислить, записав результат перед скобками, то система уравнений примет окончательный вид:
В полученной системе j 0 =1, а j 8 =0.
В случае аппроксимации производной по времени конечными разностями «вперед», что в цифровой моделирующей среде может случиться и при непрерывном времени, соотношение между шагом по временной переменной и по пространственной должно подчиняться следующему неравенству: . При несоблюдении этого условия решение может оказаться численно неустойчивым.
2.3 Программирование для математического моделирования
Полученная в пункте 2.2 система дифференциальных уравнений, благодаря представлению искомых переменных в относительном виде, при максимальных напряжениях на выходах операционных блоков в 1 вольт и масштабных множителях, равных единице, специального расчета коэффициентов передач не требует. Коэффициенты по входам сумматоров будут такими же, как в уравнениях.
????? ?????????? ???????????? ?????? ??? ???? ?????? ???????? ?? ??????? 1.
Рисунок 1