Курсовая работа: Решение задач линейного программирования

Верхняя строка симплекс-таблицы представляет целевую функцию задачи. Каждая строка симплекс-таблицы, кроме первой, соответствует определенному ограничению-равенству задачи. Свободные члены ограничений составляют крайний левый столбец таблицы. Слева от таблицы записаны текущие базисные переменные (X1, ..., Xm). Сверху от таблицы приведен набор всех переменных задачи, где Xm+1, ..., Xn - свободные переменные задачи.

Преобразования таблицы надо производить до тех пор, пока не будет получена симплекс-таблица, которая одновременно является прямо и двойственно допустимой.

Данный метод получил широкое распространение и большую популярность по сравнению с другими подходами, так как крайне редко на практике встречаются задачи трудные для симплекс-метода.

2.2.2. Геометрический метод

Применяется дя задач с двумя переменными. Метод решения состоит в следующем:

На плоскости Ох1х2 строятся прямые, которые задают соответствующие ограничения:

a11 x1 + a11 x2 + …… + a11 xn = b1 ,

a21 x1 + a22 x2 + …… + a2n xn = b2 ,

…………………………………………

am1 x1 + am2 x2 + …… + amn xn = bm .

Находим множество всех точек х1,х2, удовлетворяющим всем неравенствам. Такое множество называется областью допустимых решений. Строим вектор и перемещаем линию уровня, который задается уравнением: с1х1+с2х2 = const в направлении вектора до последней точки пересечения с ОДР. Эта точка и дает решение задачи Lmax = значению L в этой точки

2 .3 . Двойственная задача.

Общая схема построения двойственной задачи.

Если задана общая задача ЛП:

где D определяется системой уравнений и неравенств:

то двойственной по отношению к ней называется общая задача ЛП:

где D* определяется системой уравнений и неравенств:

Как следует из приведенной схемы при переходе от прямой задачи ЛП к двойственной:

1. Тип оптимума меняется на противоположный, т. е. максимум на минимум, и наоборот.

2. Вектор коэффициентов целевой функции c и столбец ограничений b меняются местами.

3. Матрица ограничений задачи А транспонируется.

4. Множество индексов переменных, на которые наложено условие неотрицательности в прямой задаче определяют номера ограничений, имеющих форму неравенств в двойственной задаче .

5. Множество номеров ограничений, имеющих форму неравенств в прямой задаче определяют множество индексов переменных, на которые накладывается условие неотрицательности, в двойственной задаче .

Из приведенного определения вытекает важное свойство — симметричность отношения двойственности, т. е. задача, двойственная по отношению к двойственной, совпадает с прямой (исходной) задачей.

К-во Просмотров: 1044
Бесплатно скачать Курсовая работа: Решение задач линейного программирования