Курсовая работа: Решение задач линейного программирования

Основные теоремы:

Теорема 1. Если одна из двойственных задач имеет конечный оптимум, то другая также имеет конечный оптимум, причем экстремальные значения целевых функций совпадают

Теорема 2 ( о дополняющей нежесткости). Для того чтобы план х* и у* являлись оптимальными решениями соответственно задач линейного программирования и двойственной к ним необходимо и достаточно, чтобы выполнялись следующие соотношения:

Теорема 3 (об оценках). Значение переменных в оптимальном решении двойственной задачи представляет собой оценки влияния свободных членов bi в системе ограничения прямой задачи на величину целевой функции f(x*)


2.4. Транспортная задача.

Одна из наиболее распространенных задач математического программирования — транспортная задача. В общем виде ее можно представить так: требуется найти такой план доставки грузов от поставщиков к потребителям, чтобы стоимость перевозки (или суммарная дальность, или объем транспортной работы в тонно-километрах) была наименьшей. Следовательно, дело сводится к наиболее рациональному прикреплению производителей к потребителям продукции (и наоборот). В простейшем виде, когда распределяется один вид продукта и потребителям безразлично, от кого из поставщиков его получать, задача формулируется следующим образом.

Имеется ряд пунктов производствас объемами производства в единицу времени (месяц, квартал), равными соответственнои пункты потребления потребляющие за тот же промежуток времени соответственно продукции. В случае, если решается закрытая (сбалансированная) задача, сумма объемов производства на всех пунктах-поставщиках равна сумме объемов потребления на всех пунктах-получателях:

Кроме того, известны затраты по перевозке единицы продукта от каждого поставщика к каждому получателю — эти величины обозначаются В качестве неизвестных величин выступают объемы продукта, перевозимого из каждого пункта производства в каждый пункт потребления, соответственно обозначаемые.

Тогда наиболее рациональным прикреплением поставщиков к потребителям будет такое, при котором суммарные затраты на транспортировку будут наименьшими:

При этом каждый потребитель получает нужное количество продукта:

и каждый поставщик отгружает весь произведенный им продукт:

Как и во всех подобных случаях, здесь также оговаривается неотрицательность переменных: поставка от какого-то пункта производства тому или иному пункту потребления может быть равна нулю, но отрицательной, т. е. следовать в обратном направлении, быть не может.

Рассмотрим таблицу.

Строки транспортной таблицы соответствуют пунктам производства (в последней клетке каждой строки указан объем запаса продукта ai), а столбцы — пунктам потребления (последняя клетка каждого столбца содержит значение потребности bj). Все клетки таблицы (кроме тех, которые расположены в нижней строке и правом столбце) содержат информацию о перевозке из i-го пункта в j-й: в левом верхнем углу находится цена перевозки единицы продукта, а в правом нижнем — значение объема перевозимого груза для данных пунктов. Клетки, которые содержат нулевые перевозки (xi,j=0), называют свободными, а ненулевые — занятыми (xi,j>0).

В1

В2

……

Вn

Всего

C1,1

C1,2

……

К-во Просмотров: 1035
Бесплатно скачать Курсовая работа: Решение задач линейного программирования