Курсовая работа: Резонатор на основе прямоугольного волновода
откуда
(5)
где по-прежнему р — любое целое положительное число, исключая нуль.
Значение продольного волнового числа, удовлетворяющее равенству (5), будем называть резонансным значением
. (6)
Отсюда легко перейти к резонансному значению длины волны в волноводе
(7)
а затем, воспользовавшись дисперсионным соотношением для волны типа в прямоугольном волноводе
вычислить резонансное значение длины волны генератора:
(12)
Таким образом, можно сделать определенные выводы:
1. Для прямоугольной полости с идеально проводящими стенками решения уравнения Гельмгольца вида (3) существуют не при любом значении длины волны возбуждающего источника, а лишь при таких длинах волн, которые удовлетворяют резонансному условию (7).
2. Каждому допустимому значению целочисленного индекса р соответствуют своя резонансная длина волны и своя характерная структура пространственного распределения векторов электромагнитного поля, представляющая собой тип колебаний в прямоугольном объемном резонаторе. В физике типы колебаний в резонаторах, как, впрочем, и типы волн в волноводах часто называют модами соответствующих распределенных систем (от латин. modus — образ).
3. Типы колебаний в прямоугольном объемном резонаторе можно классифицировать. Рассмотренная совокупность мод может быть обозначена как . Такая символика показывает, что поле в объемном резонаторе порождается волноводной волной типа , а вдоль оси zукладывается р стоячих полуволн.
Структура электромагнитного поля
Удобнее всего проследить структуру поля в резонаторе на примере простейшей моды . Здесь, очевидно, пространственное распределение напряженности электрического поля описывается формулой
(8)
где — произвольный амплитудный множитель. Магнитное поле в резонаторе находим непосредственно на основании второго уравнения Максвелла
из которого после подстановки (8) вытекают формулы для всех трех проекций:
(9)
резонатор объемный колебание
Необходимо обратить внимание на следующее важное обстоятельство: комплексные амплитуды обеих проекций магнитного вектора содержат мнимые единицы, в то время как комплексная амплитуда единственной отличной от нуля проекции электрического вектора чисто действительна. Это говорит о том, что между мгновенными значениями напряженностей электрического и магнитного полей в резонаторе существует сдвиг фаз по времени на угол 90°. Поэтому в объемном резонаторе, как и в любой другой электромагнитной колебательной системе, происходит непрерывный обмен энергией между электрическим и магнитным полями. Дважды за период собственных колебаний вся энергия электрического поля переходит в энергию магнитного поля и наоборот. Сказанное иллюстрируется мгновенными картинами распределения силовых линий электромагнитного поля в объемном резонаторе с типом колебаний (рис. 2). Картины построены для различных моментов времени в пределах половины периода.
Рис.2. Структура электромагнитного поля для колебаний
типа в последовательные моменты времени
Отметим также, что среднее значение вектора Пойнтинга, образованного полями вида (8) и (9), тождественно равно нулю. Отсутствие усредненного потока энергии через идеальный резонатор говорит об автономном, не зависящем от параметров внешних устройств характере собственных колебаний в такой электродинамической системе. На языке теории электрических цепей энергию, запасенную в резонаторе, можно назвать реактивной энергией.
Общая задача о собственных колебаниях в прямоугольном объемном резонаторе