Курсовая работа: Резонатор на основе прямоугольного волновода
(10)
Поскольку волна типа Етп имеет критическую длину
(11)
из равенства (10) получаем формулу для расчета резонансной длины волны колебания типа Етпр в прямоугольном объемном резонаторе
(12)
В практических расчетах часто используют также соответствующую резонансную частоту
(13)
Если допустить, что по прямоугольному волноводу распространяется волна типа Нтп, то аналогичным образом в замкнутой полости возникают колебания типа Нтпр. Совершенно очевидно, что их резонансные длины волн и резонансные частоты определяются выражениями (12) и (13).
Следует отметить, что в выражения (12) и (13) размеры , и относящиеся к осям х, у и zсоответственно, входят совершенно равноправно. Поскольку известно, что некоторые индексы типов волн в волноводе могут быть равны нулю, возникает вопрос о том, существуют ли резонаторные моды с индексом .
Если , то поле в резонаторе не меняется вдоль оси z. Обратимся к волноводной волне типа Етп. Здесь силовые линии электрического вектора в продольном разрезе имеют конфигурацию, показанную на рис. 3а для случая п=1. Данный рисунок отвечает случаю, когда рассматриваемый тип волны является распространяющимся, т. е. . Если же значение стремится к, то длина волны в волноводе стремится к бесконечности исиловые линии вектора напряженности электрического поля приобретают вид «нитей», параллельных оси z(рис. 3б).
Рис.3. К вопросу о существовании колебаний типа Emn0
В пределе при электрический вектор имеет лишь z-ю составляющую и граничные условия на двух идеально проводящих торцевых стенках резонатора выполняются автоматически независимо от расстояния между ними. Таким образом, моды типа Етп0 в прямоугольном объемном резонаторе возможны.
Обратимся теперь к колебаниям Н-типа. Здесь исходная волна типа Нтп в волноводе, по определению, имеет электрические векторы, лежащие лишь в поперечной плоскости. Если все составляющие векторов поля не будут меняться вдоль оси z, как это должно быть в случае резонаторной моды типа Нтп0, то поле в любой точке резонатора должно обратиться в нуль, поскольку граничные условия на стенках с координатами z=0 и z=lвыполняться не могут. Таким образом, в прямоугольном объемном резонаторе колебания типа Нтп0 физически не существуют.
Итак, классификация типов колебаний в прямоугольном объемном резонаторе включает в себя следующие этапы:
• одна из осей резонатора принимается за продольную ось регулярного прямоугольного волновода;
• устанавливается, какой тип волны, Етп или Нтп , существует в таком волноводе;
• определяется значение индекса р — число стоячих полуволн, которые укладываются между торцевыми стенками.
Следует заметить, что такой принцип классификации в значительной степени условен, так как связан с произвольным выбором продольной оси регулярного прямоугольного волновода. Чтобы уяснить это, обратимся к рис. 4а, на котором изображена уже знакомая картина силовых линий векторов электромагнитного поля для колебания типа Н101. Если теперь резонатор повернуть в пространстве таким образом, чтобы ребро с размером было ориентировано вдоль оси у (рис. 4б), то этот же самый электромагнитный процесс должен быть назван колебанием типа E110. Легко проверить, что резонансные длины волн для обоих названных типов колебаний одинаковы.
Рис. 4. К вопросу об условном характере классификации типов колебаний в прямоугольном объёмном резонаторе
Понятие основного типа колебаний
На практике обычно стремятся к тому, чтобы при заданной резонансной частоте геометрические размеры колебательной системы были минимальными. Этого удается достичь возбудив в резонаторе колебание основного (низшего) типа. Так принято называть моду с наибольшей резонансной длиной волны при фиксированных размерах резонансной полости.
Индексы m, п, р для основного типа колебаний, очевидно, должны подбираться так, чтобы предельно уменьшить знаменатель в формуле (2). Ясно, что один из индексов при этом должен быть равен нулю, а два оставшихся — единице. Нулевой индекс соответствует той декартовой оси, вдоль которой ориентировано ребро с наименьшей длиной.
Следует отметить, что в объемных резонаторах могут существовать вырожденные моды, у которых резонансные длины волн совпадают, несмотря на то что структуры поля совершенно различны. Примером могут служить колебания типов Е351 и Н135 в резонаторе кубической формы.
Структура электромагнитного поля в прямоугольном резонаторе
Строгий подход к проблеме собственных колебаний электромагнитного поля в замкнутой полости прямоугольной формы с идеально проводящими стенками основан на поиске комплекснозначной функции , которая удовлетворяет однородному уравнению Гельмгольца
(14)
во всех внутренних точках резонатора. Это векторное уравнение есть сокращенная форма записи трех скалярных уравнений относительно декартовых проекций (символом а обозначены х, у или z):