Курсовая работа: Роль моделирования при работе над задачей в 5 классе
б) 14 – 3 = 11 (км/ч) – скорость движения лодки.
Ответ: а) 25 км/ч;
б) 11 км/ч.
Задача 3: (№ 1172)
«Со станции вышел товарный поезд со скоростью 50 км/ч. Через 3 ч. с той же станции вслед за ним вышел электропоезд со скоростью 80 км/ч. Через сколько часов после своего выхода электропоезд догонит товарный поезд?
80 км/ч 50 км/ч
3 ч. tвстр - ?
1) 50 ∙ 3 = 150 (км) – прошел товарный поезд.
2) 80 – 50 = 30 (км/ч) – скорость сближения.
3) 150 : 30 = 5 (ч) – через это время электропоезд догонит товарный поезд.
Ответ: через 5 часов.
Задача 4: (№ 1179)
«Два поезда вышли в разное время навстречу друг другу из двух городов, расстояние между которыми 782 км. Скорость первого поезда 52 км/ч, а второго 61 км/ч. Пройдя 416 км, первый поезд встретился со вторым. На сколько один из поездов вышел раньше другого?»
52 км/ч 61 км/ч
416 км
782 км
1) 416: 52 = 8 (ч) – шел первый поезд.
2) 782 – 416 = 366 (км) – прошел второй поезд.
3) 366: 6 = 6 (ч) – шел второй поезд.
4) 8 – 6 = 2 (ч) – на это время первый поезд вышел раньше второго.
Ответ: на 2 часа.
Задача 5: (№ 1193)
«Собственная скорость катера (скорость в стоячей воде) равна 21,6 км/ч, а скорость течения реки 4,7 км/ч. Найдите скорость катера по течению и против течения реки.»
Собств. v | V течения | V по течению реки | V против течения |
21,6 | 4,7 | ? | ? |
1) 21,6 + 4,7 = 26,3 (км/ч) – скорость катера по течению.
2) 21,6 – 4,7 = 16,9 (км/ч) – скорость катера против течения.
Ответ: 26,3 км/ч; 16,9 км/ч.
Задача 6: (№ 1194)
«Скорость теплохода по течению реки равна 37,6 км/ч. Найдите собственную скорость теплохода и его скорость против течения, если скорость течения реки 3,9 км/ч.»
Собств. v | <