Курсовая работа: Розробка і оформлення конструкторської документації гібридних інтегральних мікросхем
Гібридні інтегральні мікросхеми мають вищу радіаційну стійкість.
Недоліки:
1. Мала надійність, через те, що використовується навісний монтаж.
2. Більші габарити і вага.
Неможливість отримання активних елементів в єдиному технологічному циклі з пасивними [5].
1.6. Технології виробництва ГІМС
Напівпровідникова мікросхема — це така мікросхема, де всі елементи і між елементні з'єднання виконані на одному напівпровідниковому кристалі (наприклад, кремнію, германія, арсеніду галію).
- Товсто-плівкова інтегральна схема;
- Тонко-плівкова інтегральна схема.
Гібридна мікросхема — крім напівпровідникового кристалу містить деяку кількість безкорпусних діодів, транзисторів й інших електронних компонентів, поміщених в один корпус.
Вид оброблюваного сигналу:
- Аналогові
- Цифрові
- Аналого-цифрові
Аналогові мікросхеми — вхідні і вихідні сигнали змінюються за законом безупинної функції в діапазоні від позитивного до негативної напруги живлення [5].
Цифрові мікросхеми — вхідні і вихідні сигнали можуть мати два значення: логічний чи нуль логічна одиниця, кожному з який відповідає визначений діапазон напруги. Наприклад, для мікросхем ТТЛ-логіки при живленні +5 В діапазон напруги від 0 до 0,8 В відповідає логічному нулю, а діапазон від 2,4 до 5 В відповідає логічній одиниці. Для мікросхем ЕСЛ-логіки при живленні 5,2 В: логічна одиниця — це 0,8 - 1,03 В, а логічний нуль — це 1,6 - 1,75 В.
Аналого-цифрові мікросхеми сполучають у собі форми цифрової й аналогової обробки сигналів. В міру розвитку технологій одержують усе більше поширення.
Основним елементом аналогових мікросхем є транзистори (біполярні чи польові). Різниця в технології виготовлення транзисторів істотно впливає на характеристики мікросхем. Тому нерідко в описі мікросхеми вказують технологію виготовлення, щоб підкреслити тим самим загальну характеристику властивостей і можливостей мікросхеми. У сучасних технологіях поєднують технології біполярних і польових транзисторів, щоб досягти поліпшення характеристик мікросхем [5].
- Мікросхеми на уніполярних (польових) транзисторах — найбільш економічні (по споживанню струму):
- КМОП-логіка (комплементарна МОП-логіка) — кожен логічний елемент мікросхеми складається з пари взаємодоповнюючих (комплементарних) польових транзисторів (n-МОП і p-МОП).
Мікросхеми на біполярних транзисторах:
- РТЛ — резисторно-транзисторна логіка (застаріла, замінена на ТТЛ);
- ДТЛ — діод-транзисторна логіка (застаріла, замінена на ТТЛ);
- ТТЛ — транзисторно-транзисторна логіка — мікросхеми зроблені з біполярних транзисторів із багато-емітерними транзисторами на вході;
- ТТЛШ — транзисторно-транзисторна логіка з діодами Шотки — удосконалена ТТЛ, у якій використовуються біполярні транзистори з ефектом Шотки.
- ЕСЛ — еміттерно-звязана логіка — на біполярних транзисторах, режим роботи яких підібраний так, щоб вони не входили в режим насичення, — що істотно підвищує швидкодію.
КМОП і ТТЛ (ТТЛШ) технології є найбільш поширеними логіками мікросхем. Де небхідно заощаджувати споживання струму, застосовують КМОП-технологію, де важливіше швидкість і не потрібно економія споживаної потужності застосовують ТТЛ-технологію. Слабким місцем КМОП-мікросхем є уразливість від статичної електрики — досить торкнутися рукою висновку мікросхеми і її цілісність уже не гарантується. З розвитком технологій ТТЛ і КМОП мікросхеми по параметрах зближаються і як наслідок, наприклад, серія мікросхем 1564 — зроблена за технологією КМОП, а функціональність і розміщення в корпусі як у ТТЛ технології [5].
Мікросхеми, виготовлені по ЕСЛ-технології є найшвидшими, але найбільш енергоспоживаючими і застосовувалася при виробництві обчислювальної техніки, коли найважливішим параметром була швидкість обчислення. У СРСР самі продуктивні ЕОМ типу ЄС106х виготовлялися на
ЕСЛ-мікросхемах. Зараз ця технологія використовується рідко [5].