Курсовая работа: Система лінійних однорідних алгебраїчних рівнянь Фундаментальна сукупність розвязків

(2.4)

Її називають розширеною матрицею системи (2.1).

З іншого боку, кожну - матрицю можна розуміти як матрицю деякої системи m лінійних алгебраїчних рівнянь з n невідомими, а - матрицю як розширену матрицю деякої неоднорідної системи m лінійних алгебраїчних рівнянь з n невідомими. Останнє зауваження означає, що система m лінійних алгебраїчних рівнянь з n невідомими з точністю до позначень невідомих, задається своєю розширеною - матрицею.

Неважко помітити, що, проводячи елементарні перетворення першого і другого роду в системі лінійних алгебраїчних рівнянь, ми маємо справу лише з коефіцієнтами при невідомих. Через це значно простіше виконувати елементарні перетворення, оперуючи не з самою системою, а лише з її розширеною матрицею. Таким чином, елементарні перетворення першого і другого роду над системами лінійних алгебраїчних рівнянь з невідомими здійснюються, як перетворення відповідних їм матриць. При цьому переставлянню місцями двох рівнянь системи відповідає переставляння місцями двох рядків матриці системи (елементарне перетворення першого роду), а додаванню до якогось рівняння системи іншого рівняння цієї системи, помноженого на деяке число, відповідає додавання до якогось рядка матриці системи іншого її рядка, помноженого на деяке число (елементарне перетворення другого роду).

6. Ранг матриці.

Нехай – система таких n-вимірних векторів, що:

,

тобто — система векторів-рядків матриці А. Цю систему можна впорядковувати різними способами.

Нехай — певним чином впорядкована система векторів-рядків матриці А. Вилучаючи з цієї системи ті вектори-рядки матриці А, які лінійно виражаються через попередні, одержуємо лінійно незалежну підсистему векторів-рядків матриці А.

Зрозуміло, що впорядковуючи різними способами систему векторів-рядків матриці А, ми будемо одержувати, загалом, різні лінійно незалежні підсистеми лінійно незалежних векторів-рядків матриці А. Спільним для всіх таких підсистем є кількість векторів-рядків матриці А, що входять до них. Власне, це число називається рангом системи векторів-рядків матриці А.

Означення. Рангом матриці А називається ранг системи її векторів-рядків.

Нехай А — довільна прямокутна матриця, k — таке натуральне число, що Зафіксуємо в цій матриці k рядків і k стовпців. Не змінюючи взаємного розташування елементів матриці А, розташованих на перетині зафіксованих рядків і стовпців, складемо з них матрицю k-го порядку. Детермінант цієї матриці називається мінором k-го порядку матриці А.

Кажуть, що мінор r+1-го порядку матриці А обводить мінор 1-го порядку, якщо він містить його в собі повністю.

Теорема. Найвищий порядок r відмінних від нуля мінорів матриці А дорівнює рангу цієї матриці.

Наслідок 1. Ранг системи векторів-рядків матриці А дорівнює рангові системи векторів-стовпців цієї матриці.

Наслідок 2. Детермінант квадратної матриці дорівнює нулю тоді і тільки тоді, коли якийсь її рядок є лінійною комбінацією інших її рядків.

Для знаходження рангу матриці А розмірності використовують такий алгоритм:

1) Якщо всі елементи матриці А дорівнюють нулю, тобто


, то її ранг R(A) дорівнює нулю.

2) Якщо хоча би один елемент матриці А відмінний від нуля, то При цьому, якщо всі мінори другого порядку

матриці дорівнюють нулю, то .

3) Якщо хоча би один мінор другого порядку матриці А відмінний від нуля, то При цьому, якщо всі мінори третього порядку

матриці А, які обводять відмінний від нуля мінор другого порядку матриці A, дорівнюють нулю, то .

4) Якщо хоча би один мінор третього порядку матриці А відмінний від нуля, то При цьому, якщо всі мінори четвертого порядку матриці А, які обводять відмінний від нуля мінор третього порядку матриці А, дорівнюють нулю, то ... і т.д.

Означення. Нехай r — ранг матриці . Будь-який відмінний від нуля мінор 1-го порядку матриці називають її базовим мінором.

7. Фундаментальна система розв’язків.

З теореми Кронекера-Капеллі випливає, що будь-яка система (2.2) лінійних однорідних рівнянь є сумісною. Вона має очевидний (тривіальний) розв'язок: (його записують у вигляді (0.....0)). Якщо ранг матриці системи (2.2) дорівнює кількості невідомих, тобто , то така система має тільки нульовий розв'язок. Якщо ж , де , то в системі є n-r вільних невідомих, які можна дібрати так, щоб система (2.2) мала ще й ненульові розв'язки. Зазначимо, що система n лінійних однорідних рівнянь з n невідомими тоді і тільки тоді має розв'язки, відмінних від нульового, коли детермінант цієї системи дорівнює нулю.

Нехай вектори та є розв'язками с системи (2.2). Тоді при будь-якому дійсному k вектор також є розв'язком системи (2.2). Крім того, при будь-яких дійсних k та l вектор також є розв'язком системи (2.2). Іншими словами: будь-яка лінійна комбінація розв'язків системи (2.2) лінійних однорідних алгебраїчних рівнянь є розв'язком цієї ж системи Сукупність усіх можливих розв'язків системи (2.2) називають простором розв'язків цієї системи.

Систему (2.2) розв'язують за тим же алгоритмом, що й систему (2.1). При цьому, очевидно і ми фіксуємо деякий базовий мінор матриці А системи (2.2). Потім виконуємо такі дії:

К-во Просмотров: 205
Бесплатно скачать Курсовая работа: Система лінійних однорідних алгебраїчних рівнянь Фундаментальна сукупність розвязків