Курсовая работа: Сравнительный анализ методов оптимизации

Выполнила

Студентка группы ______

______________________

Руководитель

______________________

Караганда-2009


Содержание

Введение

Постановка задачи

1 Прямые методы одномерной оптимизации

1.1 Метод дихотомии

1.2 Метод золотого сечения

2 Прямые методы безусловной оптимизации многомерной функции

2.1 Метод покоординатного циклического спуска

2.2 Метод Хука - Дживса

2.3 Метод правильного симплекса

2.4 Метод деформированного симплекса

3. Условная оптимизация

3.1 Метод преобразования целевой функции

3.2 Метод штрафных функций

4. Симплекс таблицы

Заключение

Список используемой литературы

Приложение А Листинг программ: Метод дихотомии, Метод золотого сечения, Метод покоординатного циклического спуска, Метод Хука – Дживса, Метод правильного симплекса

Приложение Б Листинг программы: Метод деформированного симплекса

Приложение В Листинг программы: Метод правильного трехмерного симплекса (максимизация объема фигуры)


Введение

Оптимизация как раздел математики существует достаточно давно. Оптимизация - это выбор, т.е. то, чем постоянно приходится заниматься в повседневной жизни. Хотя конечной целью оптимизации является отыскание наилучшего или "оптимального" решения, обычно приходится довольствоваться улучшением известных решений, а не доведением их до совершенства. По этому под оптимизацией понимают скорее стремление к совершенству, которое, возможно, и не будет достигнуто.

Формулировка математической задачи оптимизации.

В достаточно общем виде математическую задачу оптимизации можно сформулировать следующим образом:

Минимизировать (максимизировать) целевую функцию с учетом ограничений на управляемые переменные.

Под минимизацией (максимизацией) функции n переменных f(x)=f(x1, ... ,xn) на заданном множестве U n-мерного векторного пространства En понимается определение хотя бы одной из точек минимума (максимума) этой функции на множестве U, а также, если это необходимо, и минимального (максимального) на U значения f(x).

При записи математических задач оптимизации в общем виде обычно используется следующая символика:

f(x) -> min (max),

x принадлежит U,

где f(x) - целевая функция, а U - допустимое множество, заданное ограничениями на управляемые переменные.


Постановка задачи

Целью данного курсового проекта является изучение методов оптимизации функции. Методов одномерной оптимизации: метод дихотомии, золотого сечения; многомерной безусловной оптимизации: покоординатный циклический спуск, метод Хука – Дживса, правильный симплекс, деформированный симплекс, а также методов условной оптимизации Метод преобразования целевой функции, метод штрафных функций, табличный симплекс – метод.


1. Прямые методы одномерной оптимизации

Задачи одномерной минимизации представляют собой простейшую математическую модель оптимизации, в которой целевая функция зависит от одной переменной, а допустимым множеством является отрезок вещественной оси:

f(x) -> min ,

x принадлежит [a, b].

Максимизация целевой функции эквивалента минимизации ( f(x) -> max ) эквивалентна минимизации противоположной величины ( -f(x) -> min ), поэтому, не умаляя общности можно рассматривать только задачи минимизации.

К математическим задачам одномерной минимизации приводят прикладные задачи оптимизации с одной управляемой переменной. Кроме того, необходимость в минимизации функций одной переменной возникает при реализации некоторых методов решения более сложных задач оптимизации.

Для решения задачи минимизации функции f(x) на отрезке [a, b] на практике, как правило, применяют приближенные методы. Они позволяют найти решения этой задачи с необходимой точностью в результате определения конечного числа значений функции f(x) и ее производных в некоторых точках отрезка [a, b]. Методы, использующие только значения функции и не требующие вычисления ее производных, называются прямыми методами минимизации.

Большим достоинством прямых методов является то, что от целевой функции не требуется дифференцируемости и, более того, она может быть не задана в аналитическом виде. Единственное, на чем основаны алгоритмы прямых методов минимизации, это возможность определения значений f(x) в заданных точках.

Рассмотрим наиболее распространенные на практике прямые методы поиска точки минимума. Самым слабым требованием на функцию f(x), позволяющим использовать эти методы, является ее унимодальность. Поэтому далее будем считать функцию f(x) унимодальной на отрезке [a, b].

Функция f(x) называется унимодальной на отрезке [a,b], если она непрерывна на [a,b] и существуют числа , , такие, что:

если , то на отрезке [a; ] функция f(x) монотонно убывает;

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 784
Бесплатно скачать Курсовая работа: Сравнительный анализ методов оптимизации