Курсовая работа: Средние величины и показатели вариации
В данном случае следует воспользоваться формулой средней арифметической взвешенной, поскольку данные вторичные. Интервальные значения признака встречаются не один раз (т.е. повторяются) и эти числа повторений (частоты) не одинаковы.
Конкретными значениями признака, которые должны непосредственно участвовать в расчетах служат середины (центры) интервалов, весами – частоты.
Данный результат отличается от результата, полученного на основе средней арифметической простой. Это объясняется тем, что на основе ряда распределения мы уже не располагаем исходными индивидуальными данными, а вынуждены ограничиться лишь сведениями о величине середины (центра) интервала.
Пример 4.6. Просроченная задолженность по кредитам предприятиями фирмы за отчетный год характеризуется следующими данными:
№ предприятия фирмы | Задолженность по кредитам, тыс. руб. | Удельный вес просроченной задолженности, % | |
1 2 3 |
3500 4000 2000 |
15 30 20 |
52500 120000 40000 |
Итого | 9500 | 212500 |
Определить средний процент просроченной задолженности фирмы.
Решение: Основой расчета является экономическое содержание показателя.
Удельный вес Объем просроченной задолженности
просроченной = -------------------------------------------------------- ∙ 100
задолженности, , % Объем общей задолженности
Для расчета среднего процента просроченной задолженности фирмы в этом случае воспользуемся формулой средней арифметической взвешенной:
%.
3. Средняя гармоническая и условия ее применения
Среднюю гармоническую взвешенную следует использовать в тех случаях, когда, кроме вариант осредняемого признака , известны показатели, представляющие собой произведения вариант на их частоты . Величиной может быть, например, товарооборот по видам товаров при расчете средней их цены, фонды заработной платы у отдельных категорий работников при расчете средней заработной платы; стоимостные объемы сделок при покупке валют, ценных бумаг, биржевых продаж и т.д. Как видим, ситуаций, когда нам известны не частоты, а произведения частот на соответствующие им варианты при расчете средней величины, более чем достаточно.
Формула средней гармонической взвешенной имеет вид:
(6)
где - значения произведений варианты на соответствующую ей частоту;
- значения вариант.