Курсовая работа: Стандартна задача лінійного програмування

(6)

' (7)

де — означає кількість маток -ї групи, що запліднюються і-м самцем.

Наведемо приклади задач нелінійного програмування.

Задача оптимального вибору факторів виробничої функції. Нехай, z— кількість деякого продукту, на виробництво якого витрачаються певні ресурси в кількостях . При цьому, якщо вартість одиниці -го ресурсу cj , то загальні витрати виробництва

(8)

Нехай, відома також залежність величини z, вираженої в натуральних чи вартісних одиницях, від кількостей використаних в процесі виробництва ресурсів xj , які виступають як фактори виробництва,

(9)

Вид та параметри функції (9) залежать від технології виробництва і, як правило, встановлюються статистичними методами. Найбільше застосування дістала виробнича функція Коббо-Дугласа

(9a)

Зрозуміло, що

(10)


В даному випадку можна сформулювати дві взаємозв'язаних задачі математичного програмування протилежного змісту.

Перша задача: при заданому об'ємі загальних витрат на виробництво продукції w=const , тобто при заданих асигнуваннях максимізувати випуск продукції z→max.

Друга задача: при заданому об'ємі виробництва даної продукції z=const мінімізувати величину загальних витрат на її виробництво w→min.

Цільовою функцією першої задачі є функція (9), а обмеженнями — співвідношення (8), (10); для другої задачі цільовою функцією являється функція (їло), а обмеженнями - співвідношення (9), (10).

Задача оптимізації розмірів закуповуваних партій товарів. Припустимо, що деякій організації на плановий період необхідні певні матеріали в об'ємах . Ці матеріали витрачаються рівномірно в часі і зберігаються на одному складі, місткістю об'ємних одиниць, причому , так що одночасно розмістити на складі всі матеріали неможливо і необхідно провести кілька закупок цих матеріалів партіями по об'ємних одиниць кожного -го товару .

Вартість зберігання на складі об'ємної одиниці -го матеріалу дорівнює , так що зберігання одиниць товару протягом часу його використання коштуватиме . Припустимо, що вартість кожної закупки -го матеріалу не залежить від розміру партії xj і дорівнює sj . Необхідно визначити оптимальні розміри закуповуваних партій так, щоб мінімізувати загальні витрати на зберігання і закупку матеріалів. Отже, цільова функція задачі

(11)

при умові, що сумарний об'єм закуповуваних партій не перевищить місткості складу


(12)

Очевидно,

(13)

Задача про режим роботи енергосистеми. В якості приклада задачі опуклого програмування розглянемо простішу задачу про оптимальне ведення режиму роботи енергосистеми.

Розглядається ізольована енергосистема, яка складається з теплоелектростанцій, зв'язаних лініями передач з вузлом, в якому зосереджене навантаження. Ставиться задача розподілу активних потужностей між електростанціями у заданий момент часу. Розподіл здійснюється за критерієм мінімізації сумарних паливних витрат на генерацію активної потужності.

Позначимо через, xj активну потужність, яка генерується на j-й електростанції. Потужності xj лежать у межах, які визначаються технічними умовами:. Крім того, повинно виконуватись умова балансу потужностей, тобто загальна потужність, що генерується, повинна відповідати потужності Р, яка споживається, з урахуванням загальних втрату лініях передач:

Втрати палива на генерацію потужності xj являють собою функцію , яка опукла на відрізку Таким чином, задача приймає вигляд:

(14)


К-во Просмотров: 409
Бесплатно скачать Курсовая работа: Стандартна задача лінійного програмування