Курсовая работа: Стандартна задача лінійного програмування

520

240

40

Побудуємо економіко-математичну модель даної задачі.

Позначимо черезкількість вироблених морозильних камер, а через, — електроплит. Виразимо математично умови, що обмежують використання ресурсів.

Виходячи з нормативів використання кожного з ресурсів на одиницю продукції, що наведені в табл. 1, запишемо сумарні витрати робочого часу:

.

За умовою задачі ця величина

не може перевищувати загальний запас даного ресурсу, тобто 520 люд.-год. Ця вимога описується такою нерівністю:

Аналогічно запишемо умови щодо використання листового заліза та скла:

Необхідно серед множини всіх можливих значеньта знайти такі, за яких сума виручки максимальна, тобто: max

Отже, умови задачі, описані в прикладі 1.1, можна подати такою економіко-математичною моделлю:

5

за умов:

Остання умова фіксує неможливість набуття змінними від'ємних значень, тому що кількість виробленої продукції не може бути від'ємною. Розв'язавши задачу відповідним методом математичного програмування, дістаємо такий розв'язок: для максимальної виручки від реалізації продукції необхідно виготовляти морозильних камер — 50 штук, електроплит — 15 (=50,=15).

Перевіримо виконання умов задачі:

9,2-50 + 4·15 = 520;

3-50 + 6·15 = 240;

2·15 = 30<40.

Всі умови задачі виконуються, до того ж оптимальний план дає змогу повністю використати два види ресурсів з мінімальним надлишком третього.

Виручка становитиме: F = 300-50 + 200-15 = 18000 ум. од.

Отриманий оптимальний план у порівнянні з першим варіантом виробничої програми уможливлює збільшення виручки на


18000-16 800 = 1200 ум. од., тобто на100% = 7,1%

4. Математична модель задачі

Математична модель стандартної задачі – це її спрощений образ, поданий у вигляді сукупності математичних співвідношень (нерівностей). Загальна задача лінійного програмування (ЛП) подається у вигляді:

знайти максимум (мінімум) функції

К-во Просмотров: 412
Бесплатно скачать Курсовая работа: Стандартна задача лінійного програмування