Курсовая работа: Стандартна задача лінійного програмування
520
240
40
—
Побудуємо економіко-математичну модель даної задачі.
Позначимо черезкількість вироблених морозильних камер, а через, — електроплит. Виразимо математично умови, що обмежують використання ресурсів.
Виходячи з нормативів використання кожного з ресурсів на одиницю продукції, що наведені в табл. 1, запишемо сумарні витрати робочого часу:
.
За умовою задачі ця величина
не може перевищувати загальний запас даного ресурсу, тобто 520 люд.-год. Ця вимога описується такою нерівністю:
Аналогічно запишемо умови щодо використання листового заліза та скла:
Необхідно серед множини всіх можливих значеньта знайти такі, за яких сума виручки максимальна, тобто: max
Отже, умови задачі, описані в прикладі 1.1, можна подати такою економіко-математичною моделлю:
5
за умов:
Остання умова фіксує неможливість набуття змінними від'ємних значень, тому що кількість виробленої продукції не може бути від'ємною. Розв'язавши задачу відповідним методом математичного програмування, дістаємо такий розв'язок: для максимальної виручки від реалізації продукції необхідно виготовляти морозильних камер — 50 штук, електроплит — 15 (=50,=15).
Перевіримо виконання умов задачі:
9,2-50 + 4·15 = 520;
3-50 + 6·15 = 240;
2·15 = 30<40.
Всі умови задачі виконуються, до того ж оптимальний план дає змогу повністю використати два види ресурсів з мінімальним надлишком третього.
Виручка становитиме: F = 300-50 + 200-15 = 18000 ум. од.
Отриманий оптимальний план у порівнянні з першим варіантом виробничої програми уможливлює збільшення виручки на
18000-16 800 = 1200 ум. од., тобто на100% = 7,1%
4. Математична модель задачі
Математична модель стандартної задачі – це її спрощений образ, поданий у вигляді сукупності математичних співвідношень (нерівностей). Загальна задача лінійного програмування (ЛП) подається у вигляді:
знайти максимум (мінімум) функції