Курсовая работа: Сущность метода Монте-Карло и моделирование случайных величин

Любые вероятности вида легко вычисляются с помощью таблицы, в которой приведены значения функции

, называемой обычно интегралом вероятностей.

Согласно (1.1)

В интеграле сделаем замену переменной , тогда получим

,

где Отсюда следует, что Также

Нормальные случайные величины очень часто встречаются при исследовании самых различных по своей природе вопросов.

Выбрав , , найдём . Следовательно,

(1.6)

Вероятность настолько близка к 1, что иногда последнюю формулу интерпретируют так: при одном испытании практически невозможно получить значение , отличающееся от больше чем на .

Проводя большое количество опытов, и получая большое количество случайных величин можно воспользоваться центральной предельной теоремой теории вероятностей. Эта теорема впервые была сформулирована П. Лапласом. Обобщением этой теоремы занимались многие выдающиеся математики, в том числе П.Л. Чебышёв, А.А. Марков, А.М. Ляпунов. Её доказательство достаточно сложно.

Рассмотрим одинаковых независимых случайных величин , так что распределения вероятностей этих величин совпадают. Следовательно, их математические ожидания и дисперсии также совпадают. Величины эти могут быть как непрерывными, так и дискретными.

Обозначим

Сумму всех этих величин обозначим через

Используя соотношения

получаем


Рассмотрим теперь нормальную случайную величину с такими же параметрами: .

В центральной предельной теореме утверждается, что для любого интервала при больших

Смысл этой теоремы в том, что сумма большого числа одинаковых случайных величин приближенно нормальна. На самом деле эта теорема справедлива при гораздо более широких условиях: все слагаемые не обязаны быть одинаковыми и независимыми; существенно только, чтобы отдельные слагаемые не играли большой роли в сумме. Эта теорема оправдывает часто встречающиеся нормальные случайные величины. В самом деле, когда встречается суммарное воздействие большого числа незначительных случайных факторов, результирующая случайная величина оказывается нормальной.

Используя эти данные из теории вероятностей можно перейти к описанию общей схемы метода Монте-Карло. Допустим, что требуется вычислить какую-то неизвестную величину . Попытаемся придумать такую случайную величину , чтобы . Пусть при этом .

Рассмотрим независимых случайных величин распределения которых совпадают с распределением . Если достаточно велико, то, согласно центральной предельной теореме, распределение суммы будет приблизительно нормальным с параметрами . Из (1.6) следует, что .

Последнее соотношение перепишем в виде:

(1.7)

Это соотношение даёт и метод расчёта , и оценку погрешности.

К-во Просмотров: 338
Бесплатно скачать Курсовая работа: Сущность метода Монте-Карло и моделирование случайных величин