Курсовая работа: Сущность метода Монте-Карло и моделирование случайных величин
итак
,
а это и означает, что случайная величина , являющаяся корнем уравнения (1.10), имеет плотность вероятностей .
Может оказаться, что разрешить уравнение (1.10) относительно трудно, например, в случаях, когда интеграл от не выражается через элементарные функции или когда плотность задана графически. Предположим, что случайная величина определена на конечном интервале и плотность её ограничена .
Разыгрывать значение можно следующим образом:
1) выбираются два значения и случайной величины и строится случайная точка с координатами
2) если точка лежит под кривой , то полагаем , если же точка лежит над кривой , то пара отбрасывается и выбирается новое значение.
1.2 Вычисление интегралов
Рассмотрим функцию , заданную на интервале , требуется приближенно вычислить интеграл
(2.1)
Этот интеграл может быть несобственным, но абсолютно сходящимся.
Выберем произвольную плотность распределения , определённую на интервале . Наряду со случайной величиной , определённой в интервале с плотностью , необходимо определить случайную величину
Согласно соотношению получим
Рассмотрим теперь одинаковых независимых случайных величин и применим к их сумме центральную предельную теорему. Формула (1.7) в этом случае запишется так:
Последнее соотношение означает, что если выбирать значений , то при достаточно большом
(2.2)
Оно показывает также, что с очень большой вероятностью погрешность приближения (2.2) не превосходит .
Для расчёта интеграла (2.1) можно использовать любую случайную величину . Определённую в интервале с плотностью . В любом случае . Однако дисперсия , а с ней и оценка погрешности формулы (2.2) зависят от того, какая величина используется, так как
(2.3)
Докажем, что это выражение будет минимальным тогда, когда пропорциональна .
Для этого воспользуемся неравенством
, в которым положим , . Получим неравенство
(2.4)
Из (2.3), (2.4) следует, что
(2.5)