Курсовая работа: Сущность метода Монте-Карло и моделирование случайных величин

.

Для получения случайных чисел используют обычно три способа: таблицы случайных величин, генераторы случайных чисел и метод псевдослучайных чисел.

Таблицы случайных чисел используют предпочтительно при расчётах вручную. Определяющую роль в этом играют два факта: 1) при использовании ЭВМ легче и удобней воспользоваться генератором случайных чисел, получаемых тут же, чем загружать из памяти значения таблицы, которая к тому же, будет занимать там место. 2) При подсчёте вручную нет необходимости использовать ЭВМ, так как часто необходимо выяснить лишь порядок искомой величины.

Генераторы случайных чисел анализируют какой-либо процесс, доступный для них (шумы в электронных лампах, скачки напряжения) и составляют последовательность из 0 и 1, из которых составляются числа с определёнными разрядами, однако такой метод получения случайных величин имеет свои недостатки. Во-первых, трудно проверить вырабатываемые числа. Проверки приходится делать периодически, так как из-за каких-либо неисправностей может возникнуть так называемый дрейф распределения (нули и единицы в каком-либо из разрядов станут появляться не одинаково часто). Во-вторых, обычно все расчёты на ЭВМ проводятся несколько раз, чтобы исключить возможность сбоя. Но воспроизвести те же самые случайные числа невозможно, если их только не запоминать по ходу счёта. А если запоминать, то снова появляется случай таблиц.

Таким образом, самым эффективным способом получения случайных чисел – это использование псевдослучайных чисел.

Числа, получаемые по какой-либо формуле и имитирующие значения случайной величины , называются псевдослучайными числами.

Первый алгоритм для получения псевдослучайных чисел был предложен Дж. Нейманом. Он называется методом середины квадратов.

Пусть задано 4-значное число . Возведём его квадрат. Получим 8-значное число . Выберем 4 средние цифры этого числа и положим .Далее и т.д.

Но этот алгоритм не оправдал себя, так как получается слишком много малых значений. Поэтому были разработаны другие алгоритмы. Наибольшее распространение получил алгоритм, называемый методом сравнений (Д. Лемер): определяется последовательность целых чисел , в которой начальное число задано, а все последующие числа вычисляются по одной и той же формуле

при (1.8)

По числам вычисляются псевдослучайные числа


(1.9)

Формула (1.8) означает, что число равно остатку, полученному при делении на , такой остаток называют наименьшим положительным вычетом по модулю Формулы (1.8), (1.9) легко реализовать на ЭВМ.

Достоинства метода псевдослучайных чисел довольно очевидны. Во-первых, на получение каждого числа затрачивается всего несколько простых операций, так что скорость генерирования случайных чисел имеет тот же порядок, что и скорость работы ЭВМ. Во-вторых, программа занимает не так много места в памяти. В-третьих, любое из чисел может быть легко воспроизведено. В-четвёртых, необходимо лишь один раз проверить «качество» такой последовательности, затем её можно много раз безбоязненно использовать при расчёте однотипных задач.

Единственный недостаток метода – ограниченность количества псевдослучайных чисел, так как если последовательность чисел вычисляется на ЭВМ по формуле вида

то эта последовательность обязательно периодическая. Впрочем, для наиболее распространённых псевдослучайных чисел период столь велик, что превосходит любые практические потребности. Подавляющее большинство расчётов по методу Монте-Карло осуществляется с использованием псевдослучайных чисел.

Значения любой случайной величины можно получить путём преобразования значений одной какой-либо случайной величины. Обычно роль такой случайной величины играет случайная величина , равномерно распределённая в . Процесс нахождения значения какой-либо случайной величины путём преобразования одного или нескольких значений называется разыгрыванием случайной величины .

Допустим, что необходимо получать значения случайной величины , распределённой в интервале , с плотностью . Докажем, что значения можно находить из уравнения

(1.10)

т.е. выбрав очередное значение , надо решить уравнение (1.10) и найти очередное значение .

Для доказательства рассмотрим функцию

.

Из общих свойств плотности (1.2), (1.3) следует, что

Значит, функция монотонно возрастает от 0 до 1, и любая прямая , где , пересекает график в одной единственной точке, абсциссу которой мы и принимаем за . Таким образом, уравнение (1.10) всегда имеет одно и только одно решение.

Выберем теперь произвольный интервал , содержащийся внутри . Точкам этого интервала отвечают ординаты кривой , удовлетворяющие неравенству .

Поэтому, если принадлежит интервалу , то принадлежит интервалу , и наоборот. Значит

Так как равномерно распределена в , то

К-во Просмотров: 344
Бесплатно скачать Курсовая работа: Сущность метода Монте-Карло и моделирование случайных величин