Курсовая работа: Сущность метода Монте-Карло и моделирование случайных величин

Выберем равномерно распределённых на отрезке последовательностей случайных чисел


Тогда точки можно рассматривать как случайные, равномерно распределённые в мерном единичном кубе.

Пусть из общего числа случайных точек точек попали в область G, остальные оказались вне G. Тогда при достаточно большом имеет место приближенная формула:

(3.2)

где под понимается мерный объём области интегрирования. Если вычисление объёма затруднительно, то можно принять , и для приближенного вычисления интеграла получим:

(3.3)

Указанный способ можно применить к вычислению кратных интегралов и для произвольной области , если существует такая замена переменных, при которой новая область интегрирования будет заключена в мерном единичном кубе.

Второй способ.

Если функция , то интеграл (3.1) можно рассматривать как объём тела в мерном пространстве, т.е.

(3.5)

где область интегрирования определяется условиями

Если в области , то введя новую переменную , получим


где область лежит в единичном мерном кубе

Возьмём равномерно распределенных на отрезке случайных последовательностей

Составим соответствующую последовательность случайных точек

Пусть из общего числа случайных точек точек принадлежат объёму , тогда имеет место приближенная формула

(3.6)

2. Практическая часть

2.1 Пример 1

Вычислим приближенно интеграл

Точное значение его известно:

Используем для вычисления две различные случайные величины , с постоянной плотностью (т.е. равномерна распределена в интервале ) и с линейной плотностью .Линейная плотность более соответствует рекомендации о пропорциональности и . Поэтому следует ожидать, что второй способ вычисления даст лучший результат.

1) Пусть , формула для разыгрывания имеет вид . А формула (2.2) примет вид .

Пусть . В качестве значений используем тройки чисел из табл. 1 (см. приложение), умноженные на 0.001. Промежуточные результаты сведены в табл. 2.1. Результат расчёта

Таблица 2.1

1 2 3 4 5 6 7 8 9 10
0.865 0.159 0.079 0.566 0.155 0.664 0.345 0.655 0.812 0.332
1.359 0.250 0.124 0.889 0.243 1.043 0.542 1.029 1.275 0.521
0.978 0.247 0.124 0.776 0.241 0.864 0.516 0.857 0.957 0.498

К-во Просмотров: 342
Бесплатно скачать Курсовая работа: Сущность метода Монте-Карло и моделирование случайных величин