Курсовая работа: Сущность метода Монте-Карло и моделирование случайных величин

.

Следовательно,

,

и правая часть (2.3) обращается в правую часть (2.5)

Использовать плотность для расчёта практически невозможно, так как для этого нужно знать значение интеграла . А его вычисление представляет собой задачу, равноценную задаче о вычислении интеграла (2.1). Поэтому ограничиваются следующей рекомендацией: желательно, чтобы плотность была пропорциональна .

Конечно, выбирать очень сложные нельзя, так как процедуры разыгрывания станет очень трудоёмкой. Оценку (2.2) с плотностью , сходной , называют существенной выборкой.

Также если стоит задача вычислить интеграл (2.1), преобразуем его к виду

(2.6)


Если теперь обозначить (2.7)

То интеграл принимает вид

(2.8)

и может быть вычислен при помощи метода статистических испытаний.

В частном случае, если и конечны или их можно считать конечными приближенно, в качестве целесообразно выбрать равномерный закон распределения.

Как известно, плотность вероятности равномерного закона распределения в интервале равна:

(2.9)

Подставим в интеграл (2.6) значение из формулы (2.9) и получим:

(2.10)

и рассмотрим процедуру вычисления:

из множества равномерно распределённых случайных чисел выбирается . Для каждого значения вычисляется , затем вычисляется среднее значение

(2.11)

функции на интервале

Таким образом, величина интеграла (2.10) может быть представлена в виде следующей формулы

(2.12)

Рассмотренный частный случай находит широкое применение интегралов методом статистического моделирования в силу того, что границы области определения могут быть легко приведены к пределам интегрирования

1.3 Вычисление кратных интегралов

Обычно при вычислении кратных интегралов методом Монте-Карло используют один из двух способов.

Первый способ.

Пусть требуется вычислить кратный интеграл

(3.1)

К-во Просмотров: 339
Бесплатно скачать Курсовая работа: Сущность метода Монте-Карло и моделирование случайных величин