Курсовая работа: Теория игр 2

α 2

А m

am1

am2

amn

α i

βi

β1

β2

βn

Наиболее полно разработан математический аппарат игр с нулевой суммой, когда выигрыш одного игрока равен проигрышу другого игрока, т.е. общая сумма выигрыша всех игроков равна нулю.

При построении игровых моделей предполагается, что каждый из игроков будет выбирать только лучшую (для себя) стратегию.

Результатом исследования игровой модели является определение наиболее осторожной стратегии поведение игрока, либо обеспечение гарантированного выигрыша (как правило, минимального), либо сведение к минимуму проигрыша. Риски при получении большого выигрыша не учитываются и не оцениваются.

Таким образом, результаты исследования игровых моделей указывают на оптимальную стратегию поведения (гарантированный выигрыш), а какой стратегией воспользуется игрок в реальной жизни – дело самого игрока.


2. Игры с противодействием и нулевой суммой

Предположим, что имеются две конкурирующие фирмы, выпускающие однотипные товары. Для обеспечения наибольшей прибыли обе фирмы разработали стратегии реализации товара. В общем случае это можно записать в виде матрице (табл. 1.1).

Пусть фирма А разработала четыре стратегии, а фирма В – пять стратегий.

То есть фирма А - А1; А2; А3; А4 Аi , где i = 1,4.

Фирма В соответственно - В1; В2; В3; В4; В5 Вj , где j = 1,5.

Каждая фирма от реализации своей стратегии предполагает получить какой-то доход (табл. 2.1).

Таблица 2.1

К-во Просмотров: 1155
Бесплатно скачать Курсовая работа: Теория игр 2