Курсовая работа: Теория нелинейной теплопроводности

условие совместности которого гарантировано уравнением (5.1). Используя приведенное выше преобразование, отобразим уравнение (5.1) в линейное уравнение теплопроводности

(5.8)

в области , где F(t) удовлетворяет соотношению

(5.9)

С помощью преобразования годографа мы свяжем с уравнением (4) начальные данные

(5.10)

где z0 в силу уравнений (5.5) и (5.6) имеет вид

(5.11)

а также граничные условия

(5.12)

(5.13)


Тогда задача с начальным /граничным условием для нелинейного диффузионного уравнения (5.1) с начальными данными (5.2) и граничными условиями (5.3), (5.4) отображается в линейное уравнение теплопроводности (5.7) в области с движущейся границей, характеризующейся начальным условием (5.9) и граничными условиями (5.11), (5.12). Чтобы решить линейную задачу, введем фундаментальное ядро теплопроводности

(5.14)

и проинтегрируем тождество Грина для уравнения теплопроводности

(5.15)

по области , а также возьмем . Используя условие (5.12) и тот факт, что , получаем

(5.16)

Из уравнения (5.15) ясно, что можно определить , если известно граничное условие v(F(t), t); поэтому удобно вычислить (5.15) при . Полагая , получим

(5.17)

(5.18)

(5.19)


Уравнение (5.16) является линейным интегральным уравнением Вольтерра второго рода с сингулярным ядром Подходящий выбор функции f(t) позволяет с помощью уравнения (5.8) получить умеренно сингулярное ядро. Тогда линейное уравнение Вольтерра (5.16) допускает единственное решение в предположении, что G(t) является интегрируемой и ограниченной функцией своего аргумента.

Используя процесс Пикара последовательных приближений, решение уравнения (5.16) можно записать как

(5.20)

Здесь -ядро резольвенты, задаваемое рядом

(5.21)

Рис. 4


Графическое представление решения, соответствующего примеру 5.1 построенное относительно переменной при фиксированных значениях t для различных интервалов:

К-во Просмотров: 404
Бесплатно скачать Курсовая работа: Теория нелинейной теплопроводности