Курсовая работа: Теория распространения волн
рис. 4.3
?????, ????? ??????? ?????? λ1 , ?????????? ???????????????, ? ?????, ????? ??????? ?????? λ1 , - ????????????. ?? ??????? ?капиллярным волнам относится левая ветвь, к гравитационным – правая. а
Волны могут возникать и на поверхности соприкосновения двух жидкостей различной плотности, расположенных одна над другой. Если обе жидкости неподвижны и плотности их равны ρ1 и ρ2 , со фазовая скорость волн выражается формулой
.
Возникновение устойчивых волн в таком случае возможно только если их длина достаточно велика. Короткие волны неустойчивы, что неизбежно приводит к перемешиванию обеих жидкостей в промежуточной зоне.
Пусть верхняя жидкость течёт со скоростью ω1 относительно нижней. Возникшие волны распространяются со скоростью, равной среднему значению первоначальных скоростей над и под поверхностью раздела. На рисунке 4.3 выбрана такая система отсчёта, которая движется с этой средней скоростью. Следовательно в этой системе отсчёта гребни и впадины волн остаются неподвижными, верхний поток движется вправо, а нижний – влево.
На линии тока выделяется частица жидкости. Для этой точечной частицы нормальное ускорение равно , где ω – скорость течения на линии тока, r – радиус кривизны в рассматриваемой точке (может быть как положительным в месте выпуклости линии тока, так и отрицательным в месте вогнутости). Уравнение движения в проекции на направление r даёт:
, где ∂s – элемент дуги, p – давление в рассматриваемой точке, ρ – плотность жидкости.
Получается, что знак ∂p зависит только от знака радиуса кривизны, т. е. давление растёт по мере приближения к выпуклости линии тока и понижается у вогнутости. На рисунке 4.3 области повышенного давления обозначены плюсами, пониженного – минусами. Очевидно, что такое течение не может быть устойчивым. Жидкость из пиков волн устремится внутрь соседней среды, и обе жидкости перемешаются с образованием вихрей.
При увеличении скорости граница между неустойчивостью и устойчивостью перемещается в сторону волн с большей длиной волны, поэтому на поверхности соприкосновения двух жидкостей различной плотности могут устойчиво существовать только достаточно длинные волны.
4.2 Зависимость между групповой скоростью волн и скоростью их распространения.
Скорость, обозначаемая ранее буквой с и называемая скоростью распространения волны, - есть ни что иное, как фазовая скорость (т.е. скорость перемещения гребней волн). От неё следует отличать скорость распространения группы волн, называемую групповой скоростью (далее она будет иметь обозначение с*).
Понять различие между ними проще всего на примере картины, возникающей в результате наложения двух волн, имеющих разные амплитуды, но немного отличающиеся своей длиной. Пусть имеется синусоидальная волна
y = A sin (μx - νt),
где А есть амплитуда, t – время, а μ и ν – некоторые коэффициенты.
При изменении x на или t на синус принимает прежнее значение (т. к. sin (φ+2π) = sin (φ) по формулам приведения. Следовательно, величина
- это длина волны, (4.4)
а величина - период колебаний. Если (4.5)
μx – νt = const, т. е. если x = const + ,
то аргумент синуса не зависит от времени, поэтому не зависит от времени и ордината y. Это означает, что вся волна, не изменяя своей формы, перемещается вправо со скоростью . (4.6)
Пусть на эту волну накладывается вторая волна
y′ = A sin (μ′x - ν′t),
т. е. волна с той же амплитудой А, но с несколько иными значениями μ и ν. Результирующим движением будет
y + y′ = A[sin (μx - νt)+ sin (μ′x - ν′t)]. (4.7)
В тех точках оси x, в которых фазы обоих колебаний совпадают, амплитуда равна 2A, в тех же точках, в которых фазы обоих колебаний противоположны, амплитуда равна нулю. Такое явление называется биением. После применения к 4.7 правила сложения синусов, получается выражение
y + y′ = 2A cos sin .
В этом равенстве член sin представляет собой волну, для которой коэффициенты при x и t равны средним значениям от μ и μ′ и соответственно от ν и ν′.
Множитель 2A cos, в свою очередь, можно рассматривать как переменную амплитуду (при малых различиях параметров этот множитель изменяется очень медленно).
Группа волн кончается в той точке, где косинус делается равным нулю. Скорость перемещения этой точки (она и называется групповой скоростью) на основании выведенного соотношения 4.6 равна