Курсовая работа: Трехфазные и линейные цепи периодического несинусоидального тока

Например, требуется выяснить, как будет нагреваться сопротивление R = 10 Ом под действием тока i(t). Для этого надо знать активную мощность, выделяемую в этом сопротивлении: . Если известно разложение кривой в ряд Фурье, то можно использовать более простую формулу для расчёта действующего значения.

, .

Возведём ряд в квадрат и подставим в интеграл, получим слагаемые трёх типов:

1) ;

2) ;

3) произведение двух гармоник с разными номерами

При вычислении интеграла от этих слагаемых получим:

- от первого слагаемого ;

- от слагаемых второго вида остается (т.к. );

- от слагаемых третьего вида получим ноль.

где - действующее значение k –ой гармоники.

3) Средневыпрямлённое значение

Используя указанные величины, вводят ряд коэффициентов, характеризующих форму кривой. В радиоэлектронике чаще всего используют коэффициенты гармоник

.

2.2 Расчет режима

Периодический несинусоидальный режим в линейных цепях возникает в одном из двух случаев:

1) в схеме есть источники энергии различной частоты , причём частоты кратны некоторому общему числу;

2) в цепи действуют источники энергии не синусоидальной формы, но с кратными периодами. Задачи этого типа легко сводятся к задаче первого типа, если каждый источник разложить в ряд Фурье, тогда схема замещения несинусоидального источника ЭДС:

Задача первого типа легко решается методом наложения, т.к. цепь линейная. После расчёта всех частичных режимов ответ записывают как сумму мгновенных значений каждого режима, а уже затем ищут то, что требуется.

Пример:

, ,

1)

К-во Просмотров: 374
Бесплатно скачать Курсовая работа: Трехфазные и линейные цепи периодического несинусоидального тока