Курсовая работа: Цифровая фототриангуляция для создания топографических карт
геодезические координаты точек местности.
В начале известны координаты опорных точек в геодезической системе и фотограмметрические координаты этих точек, полученные из уравнивания сети. В качестве неизвестных выступают 7 элементов ориентирования геодезической сети:.
Определив 7 этих неизвестных, будут определяться геодезические координаты всех точек сети ПФТ.
6) исключение деформации сети.
Деформацию сети ПФТ можно описать различными полиномами.
Например, обобщённого типа:
, (1.10)
где– это коэффициенты деформации,– геодезические координаты точек сети, полученные на этапе 5 из геодезически ориентированной сети.
Из-за деформации сети после ее геодезического ориентирования на опорных точках будут получены расхождения координат :
(1.11)
Исключение деформации сети состоит из 2 процессов: сначала будут известны, опорных точек, неизвестными будут коэффициенты, а исходными для определения коэффициентов будут уравнения(1.10).
После определения коэффициентов деформации вычисляется величина разностикоординатхарактеризующие деформацию сети для всех точек сети по формулам (1.10).
Затем вычисляются исправленные координаты точек сети:
. (1.12)
1.3.2 Построение блочных сетей фототриангуляции методом связок
Наиболее строгим методом построения блочных сетей пространственной фототриангуляции аналитическим и цифровым способами по сравнению с методом независимых моделей является метод связок[2]. В основе метода связок лежат уравнения коллинеарности проектирующих лучей:
, (1.13)
В уравнении будут известны f, x0 , y0 ,x, y. Неизвестны элементы внешнегоориентирования снимков, также X, Y, Z – координаты точек сети ПФТ.
Уравнения (1.13) нелинейные и решаются итерационным методом.
На основе (1.13) имеем уравнение поправок вида:
, (1.14)
Уравнения (1.14) решаются по методу наименьших квадратов.
lx и ly – свободные члены, вычисляемые по формулам:
, (1.15) где
– вычисляются по формулам (1.13) подстановкой в нихприближённых значений неизвестных.
Достоинством метода связок является то, что сеть строится и уравнивается одновременно для всех точек, входящих в блок, а также поправки находятся непосредственно к измеренным величинам, что обеспечивает более высокую точность построения сети. Недостатками этого метода являются: сложность задания приближённых значений неизвестных (для решения этой проблемы можно предварительно уровнять сеть менее строгим методом, а её результаты использовать в качестве приближённых значений), должны отсутствовать грубые ошибки, должны быть исключены систематические ошибки (или сведены к минимуму).
1.3.3 Построение блочной сети фототриангуляции объединением одиночных моделей
Этот метод основан на том[2], что сначала по каждой стереопаре, входящей в блок, строятся независимые одиночные модели, каждая из которых имеет свой масштаб и свою систему координат.
В процессе уравнивания моделей в блоке, все независимые модели приводятся к определенному масштабу и в единую пространственную систему координат на основе совместного внешнего ориентирования моделей.