Курсовая работа: Цифровая фототриангуляция для создания топографических карт
К недостаткам алгоритма взаимной корреляции относятся:
- большой объем вычислений;
- алгоритм устойчиво работает только при следующих условиях: снимаемая местность плоская, взаимные углы наклона и разворота снимков не превышают 20-30°, а разномасштабность снимков менее 20-30%.
Метод наименьших квадратов
Для метода наименьших квадратов в качестве критерия подобия служит функция суммы квадратов разностей между яркостями пикселей двух изображений.
Пусть на ограниченном участке (x'[-M/2, M/2], y'[-N/2, N/2]) между функциямиf1 и f2 существует зависимость:
(1.24)
Для определения искомых величинp0 иq0 составим функцию:
(1.25)
Данную функцию решаем под условием минимума:
, (1.26)
Если известны приближенные значения неизвестных параметров (), то раскладывая функцию(1.25) в ряд Тейлора и ограничиваясь величинами первого порядка малости получаем линейное уравнение относительно неизвестных Dp0 иDq0 :
(1.27)
В результате приходим к системе уравнений поправок:
(1.28)
гдеA– матрица коэффициентов уравнений поправок;
dX – вектор-столбец поправок к приближенным значениям неизвестных (Dp0 и Dq0 );
V – вектор невязок уравнений, который характеризует величины шумовых составляющих.
От системы уравнений поправок переходим к системе нормальных уравнений:
(1.29)
где и .
После определенияDp0 иDq0 уточняют значения искомых параметровp0 иq0 и затем выполняют следующую итерацию. Этот процесс повторяется до получения требуемой точности вычисления неизвестных.
Алгоритм наименьших квадратов по сравнению с методом взаимной корреляции обладает рядом следующих преимуществ.
Во-первых, метод наименьших квадратов позволяет оценить точность определения искомых параметров. Для оценки точности используют среднюю квадратическую ошибку (СКО) единицы веса, которая будет характеризовать влияние шумовых составляющих и качество образца, и СКО определения параметров p0 и q0 , характеризующие точность отождествления соответственно по осям x и y. Значение СКО единицы веса определяется по известной формуле:
(1.30)
где n – количество уравнений поправок, а k – количество неизвестных.
СКО определения неизвестных p0 и q0 выражаются формулами:
(1.31)
где и – соответствующие диагональные элементы обратной матрицы нормальных уравнений.
Во-вторых, метод наименьших квадратов позволяет вести не глобальный поиск соответственной точки, подставляя все возможные значения p и q, как в методе взаимной корреляции, а вдоль направления градиента функции.