Курсовая работа: Устойчивость прямоугольных пластин судового корпуса
Курсовая работа
"Расчёт устойчивости прямоугольных пластин судового корпуса"
Исходные данные
№ п/п | Размер пластины (a), м | Размер пластины (b), м |
Модуль упругости материала Е ·103 МПа | Толщина пластины (h), м |
19 | 1.90 | 1,30 | 210 | 0.020 |
Дифференциальное уравнение нейтрального равновесия прямоугольной пластины, сжатой в двух взаимно перпендикулярных направлениях (1), (2)
Начнем изучение устойчивости пластин со случая, когда на свободно опертую прямоугольную пластину действуют сжимающие напряжения в двух взаимно перпендикулярных направлениях (рис.1).
Рис.1
Пусть σ1 - абсолютная величина сжимающего напряжения, действующего в направлении оси ох ; σ2 -абсолютная величина сжимающего напряжения, действующего в направлении оси оу ; "а " и "b" -размеры пластины в плане; "h" -толщина пластины.
Тогда дифференциальное уравнение нейтрального равновесия рассматриваемой пластины будет:
(1)
(2)
Задание формы упругой поверхности свободно опертой пластины при потере устойчивости в виде двойного тригонометрического ряда (3)
Упругая поверхность свободно опертой пластины при потере устойчивости в самом общем виде может быть представлена тригонометрическим рядом:
(3)
Граничные условия на кромках рассматриваемой прямоугольной свободно опёртой по контуру пластины (4)
Каждый член ряда (3) удовлетворяет граничным условиям на контуре рассматриваемой пластины, т.е. условиям равенства нулю в точках на контуре величины прогиба пластины и изгибающих моментов:
(4)
Уравнение, устанавливающее сочетание нагрузок Т1 и Т2 , при котором свободно опёртая по контуру прямоугольная пластина может потерять устойчивость (8)
Подставляя формулу (3) в дифференциальное уравнение (1), Получим
или
(5)
Рассматриваемая пластина может потерять устойчивость при таком сочетании нагрузок Т1 и Т2 , при котором какая-либо из скобок, входящих в выражение (5), обратится в нуль.
При этом соответствующее Аmn может стать отличным от нуля и форма потери устойчивости пластины будет
(6)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--