Курсовая работа: Властивості s-металів та їх сполук

Металічний зв’язок у чистому вигляді реалізується тільки у лужних і лужноземельних металів, а в решті металів поряд із металічним здійснюється і ковалентний зв’язок. У р-металах і особливо у перехідних d-металах тільки невелика частина електронів перебуває у стані узагальнення. Наприклад, у типовому перехідному металі ніобії Nbна один атом припадає всього 1,2 узагальнених делокалізованих електрони. Інші валентні електрони утворюють напрямлений ковалентний зв’язок між сусідніми атомами. Це є причиною високих температур плавлення та великої механічної міцності d-металів.

Великі координаційні числа металів зумовлюють значну щільність пакування (тобто частку об’єму елементарної кристалічної комірки, безпосередньо зайняту іонами металу), при якій йони укладаються у просторі як кульки однакового розміру. Структура металічних кристалів визначається у першу чергу просторово-геометричними чинниками - намаганням атомів скоординуватися якомога щільніше.

Для металів найбільш характерними є три типи кристалічної решітки:

куб іч на об’ ємноцентрована з координаційним числом 8 іщільністю пакування 68% (рис.1а); таку решітку мають металиLi, Na, K, V, W, Cr, Pb, а такожFe до температури 911о С та від 1392о С до точки плавлення;

куб іч на гранецентрована з координаційним числом 12 іщільністю пакування 74% (рис.1б), така решітка утворюється при кристалізації металів: Al, Ca, Mi,Cu, Ag, Au, а такожFeв інтервалі температур 911-1392о С;

гексагональна з координаційним числом 12 і щільністю пакування 74% (рис.1в), в якій кристалізуються метали Be, Mg, Cd, Ti, Co, Zn.

а) б)


в)

Рисунок 1 - Основні типи кристалічних решіток металів: а - кубічна об’ємноцентрована; б – кубічна гранецентрована; в – гексагональна


Тільки незначна кількість металів має кристалічні структури, відмінні від розглянутих простіших типів. До них належать Hg, In, окремі поліморфні модифікації U, Mn, Np і деякі інші.

Під час кристалізації металів (наприклад, у процесі охолоджування розплавів) одночасно утворюється величезна кількість дрібних кристаликів, які заважають один одному вирости і набути правильної форми. Тому будь-який металевий виріб має полікристалічну структуру, що складається із великої кількості дрібних кристаликів - так званих кристалітів , або зерен , які на відміну від чітко огранених монокристалів інших неорганічних речовин мають неправильну форму і різну просторову орієнтацію. З цієї причини у кристалічній структурі металів виникають дефекти, які суттєво впливають на фізичні властивості металів.

2 s-МЕТАЛИ.

s-Елементи розміщуються в ІА - і ІІА-підгрупах періодичної системи Д.І. Менделєєва. Всі вони, за винятком Гідрогену і Гелію, належать до металів.

Висока хімічна активність s-металів і найсильніші серед відомих відновні властивості приводять до того, що у природі вони ніколи не зустрічаються у вільному стані (як прості речовини), а знаходяться у численних сполуках у вигляді позитивно заряджених йонів. Завдяки великим негативним значенням електродних потенціалів добування s-металів неможливо здійснити із водних розчинів, оскільки вони бурхливо реагують з водою, даючи розчини гідроксидів - луги . Звідки і виникла назва s-металів ІА-підгрупи - лужні , а s-метали ІІА-підгрупи (крім берилію та магнію) одержали назву лужноземельні , тому що розчинність їх гідроксидів у воді є значно меншою. Вільні лужні та лужноземельні метали одержують переважно електролізом розплавів їх солей-галогенідів - найчастіше хлоридів, які утворюють природні мінерали.

Невеликі заряди ядер і порівняно велики радіуси атомів зумовлюють високу хімічну активність s-металів, показником якої є дуже низькі значення їх потенціалів (енергій) йонізації та електронегативностей. Перший потенціал йонізації зменшуються по групі зверху униз. У літію він найбільший, у натрію - дещо менший. Більш різьке зниження потенціалу йонізації при переході від натрію до калію пояснюється явищем кайносиметрії - виникнення вільного d-підрівня. Найблизкішими за властивостями є повні електронні аналоги K, Rb, Cs, помітно відрюзняється від них Li, а Na займає проміжне місце. Чим вище значення потенціалу йонізації, тим сильнішою є поляризувальна дія катіону і тим вищою є його схільність до утворення ковалентних зв’язків. Тому йон Li+ існує лише в кристалічному стані, а у розчинах внаслідок гідратації він переходить у гідратовану форму [Li (H2 O) 4 ] + , причому молекули води утримуються досить міцно і для їх видалення недостатньо простого нагрівання.

Всі s-метали мають на зовнішньому енергетичному рівні по одному-два електрони і можуть легко їх віддавати, прагнучи набути електронну конфігурацію попереднього інертного газу. При цьому метали ІА - і ІІА-підгруп утворюють відповідно йони Ме+ і Ме2+ .

Металічні зв’язки утворюються делокалізованими валентними електронами, які утримують разом позитивно заряджені йони, що знаходяться у вузлах кристалічних решіток металів. Чим більшим є металічний радіус, тим тонкішим шаром розподілені делокалізовані електрони по позитивних йонах і тим слабкішим є зв’язок. Хімія таких елементів є, головним чином, йонною хімією, за винятком літію та берілію, які мають сильніші поляризувальні властивості. Однак у лужних і, особливо, у лужноземельних металів помітна тенденція до утворення ковалентних зв’язків. Так, у газуватому стані існують ковалентні молекули Na2 , Cs2 тощо. Крім того, зв’язок цих металів у деяких комплексних сполуках з C, N, Oтеж відноситься до ковалентних.

У водних розчинах йони s-металів деякою мірою виявляють здатність до реакцій комплексоутворювання та до утворення донорно-акцепторних зв’язків з монодентантними лігандами. Більшість таких комплексів характеризується невеликою стійкістю. Причому, двохзарядні йони металів ІІА-підгрупи мають дещо сильніші комплексоутворювальні властивості. Для них найбільш притаманними є координаційні зв’язки з донорними атомами Оксигену, а для магнію - ще з атомами Нітрогену.

2.1 Лужні метали

Загальна електронна формула s-металів ІА-підгрупи ns1 , де n - номер періоду і, одночасно, номер зовнішнього енергетичного рівня атома. Попередній електронний шар містить 8 електронів за винятком атомів літію, у яких є тільки два електрони на передзовнішньому шарі. Починаючи з четвертого періоду, атоми калію, рубідію, цезію мають вільні d-, f - і g-підрівні, які заповнються лише у наступних періодах.

Низькі значення перших потенціалів йонізації і, навпаки, дуже високі - других потенціалів йонізації є причиною того, що лужні метали у складних сполуках виявляють постійний ступінь окиснення +1. Незважаючи на те, що спорідненість до електрона у лужних металів має позитивне значення (тобто приєднання електрона до нейтрального атома супроводжується виділенням енергії), вони практично ніколи не виявляють негативних ступенів окиснення. Правда, нещодавно з’явилися відомості про те, що штучно одержано сполуку, в якій натрій перебуває у ступені окиснення -1, але це виключно рідкий випадок.

При переході від Liдо Frпослідовно зменшуються такі властивості:

температури плавлення і теплоти сублімації;

енергії утворення кристалічних решіток усіх солей (за винятком солей з аніонами, що мають дуже невеликі радіуси);

легкість термічного розкладання нітратів і карбонатів (збільшується їх міцність);

ефективні радіуси гідратованих йонів і енергії гідратації;

міцність ковалентних зв’язків у молекулах типуM2 ;

теплоти утворення фторидів, гідридів, оксидів і карбідів - внаслідок великих енергій кристалічних решіток сполук, утворених невеликими за розміром аніонами.

Для атомів лужних металів притаманне дуже невелике значення роботи виходу електрона, завдяки чому вони знайшли широке застосування в електроніці як емітери електронів для фотоелементів, фотомножників, перетворювачів світлових сигналів у електричні.

2.1.1 Поширення у природі

К-во Просмотров: 333
Бесплатно скачать Курсовая работа: Властивості s-металів та їх сполук