Курсовая работа: Выбор и построение интерполирующей функции

Пусть дана f задана таблично в точках хi она принимает значения уi = f(хi ) (i=0,1,…,n). Требуется вычислить значение функции f в некоторой точке х, не совпадающей с точками хi. В таком случае нет необходимости строить общее выражение многочленна Лагранжа явно, а требуется только вичислить его значение в точке х. Эти вычисления удобно выполнить по интерполяционной схеме Эйткина. Характерной чертой этой схемы является единообразие вичислений.

Если функция f задана в двух точках х0 и х1 значениями у0 и у1 , то для вычисления ее значения в точке х можно воспользоваться формулой:


(*) линейного интерполирования.

Обозначив значение функции в точке x через , формулу (*) можно представить в таком виде:

,

Где в правой части стоит определитель 2-го порядка. Эта формула эквивалентна формуле (*). Кроме того, , .

Пусть функция f задана в трех точках х0 , х1 и х2 своими значениями у0 , у1 и у2 и требуется вычислить ее значение в точке х. В этом случае по схеме Эйткина в точке х вычисляют сначала значения двух линейных многочленов

и ,

а затем значение квадратичного многочлена вида:

.

Непосредственной подстановкой убеждаемся, что ,


; , , .

Покажем еще, что совпадает с формулой Лагранжа для трех узлов интерполирования. Поскольку

,

то, раскрывая определитель, получаем:

Эта схема обобщается на более высокие степени. Если функция f задана в четырех точках, то кубическое интерполирование выполняется по формуле

,

Где и - значения квадратичных многочленов в точке х. Непосредственной проверкой убеждаемся, что и . Кроме того совпадает с кубическим интерполяционным многочленом Лагранжа:


.

Вообще, если в (n+1)-й точке хi (i=0,1,…,n) функция f принимает значения yi (i=0,1,…,n), то значение интерполяционного многочлена Лагранжа степени n в точке х можно вычислить по формуле

,

где и - значения интерполяционных многочленов, вычисленных в точке х на предшествующем шаге. Ясно, что для вычисления значения многочлена степени n в точке х необходимо по схеме Эйткина вычислить в этой точке значения n линейных, n-1 квадратичных, n-2 кубических многочленов и т. д., два многочлена степени n-1 и, наконец, один многочлен степени n. Все эти многочлены выражаются через определитель 2-го порядка, что делает вычисления единообразными.

Отметим то, что схема Эйткина применима и в случае неравноотстоящих узлов интерполирования.

Сплайн – интерполяция

В инженерной практике график функции y(xi ) (i=0,N) строят в основном с помощью лекал. Если точки размещены редко, то пользуются гибкой линейкой (spline), ставят ее на ребро и изгибают так, чтобы она одновременно проходила через все точки.

Поскольку приближенное уравнение изгиба пружинистого бруса имеет вид , то можно допустить, что ее форма между узлами есть алгебраический полином 3-й степени.

Вероятно, интерполирующую функцию между каждыми двумя узлами можно взять, например, в таком виде:

К-во Просмотров: 348
Бесплатно скачать Курсовая работа: Выбор и построение интерполирующей функции