Курсовая работа: Вычисление интегралов методом Монте-Карло

. (4)

Область интегрирования представляет собой n мерный параллелепипед со сторонами параллельными осям координат. Данный параллелепипед можно однозначно задать двумя вершинами , которые имеют самые младшие и самые старшие координаты всех точек параллелепипеда.

Обозначим через n -мерный вектор, имеющий равномерное распределение в параллелепипеде : , где .

Тогда ее плотность вероятностей будет определена следующим образом

(5)

Значение подынтегральной функции от случайного вектора будет случайной величиной , математическое ожидание которой является средним значением функции на множестве :

. (6)

Среднее значение функции на множестве равняется отношению значения искомого интеграла к объему параллелепипеда :

(7)

Обозначим объем параллелепипеда .

Таким образом, значение искомого интеграла можно выразить как произведение математического ожидания функции и объема n - мерного параллелепипеда :

(8)

Следовательно, необходимо найти значение математического ожидания . Его приближенное значение можно найти произведя n испытаний, получив, таким образом, выборку случайных векторов, имеющих равномерное распределение на . Обозначим и . Для оценки математического ожидания воспользуемся результатом

, (9)

где ,

,

- квантиль нормального распределения, соответствующей доверительной вероятности .

Умножив двойное неравенство из (9) на получим интервал для I :

. (10)

Обозначим точечную оценку . Получаем оценку (с надежностью ):

. (11)

Аналогично можно найти выражение для относительной погрешности :

. (12)

Если задана целевая абсолютная погрешность , из (11) можно определить объем выборки, обеспечивающий заданную точность и надежность:

. (13)

Если задана целевая относительная погрешность, из (12) получаем аналогичное выражение для объема выборки:

. (14)

1.3 Сплайн – интерполяция.

В данном программном продукте реализована возможность задавать дополнительные ограничения области интегрирования двумя двумерными сплайн – поверхностями (для подынтегральной функции размерности 3). Для задания этих поверхностей используются двумерные сплайны типа гибкой пластинки \4\.

Под сплайном (от англ. spline - планка, рейка) обычно понимают агрегатную функцию, совпадающую с функциями более простой природы на каждом элементе разбиения своей области определения. Сплайн – функция имеет следующий вид:

К-во Просмотров: 706
Бесплатно скачать Курсовая работа: Вычисление интегралов методом Монте-Карло