Лабораторная работа: Моделирование датчиков случайных чисел с заданным законом распределения

Выполнила:

ст-т. 3-го курса гр. 2202 Б2

Принял: преподаватель кафедры

Ли И.Р.

Душанбе-2010


Лабораторная работа № 2

Моделирование датчиков случайных чисел с заданным законом распределения

I Цель работы

Целью работы является:

1. Практическое освоение методов моделирования случайных чисел с заданным законом распределения

2. Разработка и моделирование на ПЭВМ датчика случайных чисел с конкретным законом распределения

3. Проверка адекватности полученного датчика

II Теоретические сведения

1. Основные методы моделирования случайных последовательностей с заданным законом распределения

При исследовании и моделировании различных сложных систем в условиях действия помех возникает необходимость в использовании датчиков случайных чисел с заданным законом распределения. Исходным материалом для этого является последовательность x 1, x 2…. xn с равномерным законом распределения в интервале [0,1] . Обозначим случайную величину, распределенную равномерно через ζ(кси).

Тогда равномерно-распределенные случайные числа будут представлять собой независимые реализации случайной величины ζ, которые можно получить с помощью стандартной функции RND (ζ)– программно реализованной на ПЭВМ в виде генератора случайных чисел с равномерным законом распределения в интервале [0,1] . Требуется получить последовательность y 1, y 2,.. yn независимых реализаций случайной величины η, распределенных по заданному закону распределения. При этом закон распределения непрерывной случайной величины может быть задан интегральной функцией распределения:

F ( y )= P ( ksiy ) (1)

или плотностью вероятности

f ( y )= F ’( y ) (2)

Функцииf ( y ) и F ( y ) могут быть заданы графически или аналитически.

Для получения случайной величины η с функцией распределения F ( y ) из случайной величины ζ, равномерно-распределенной в интервале [0,1] , используются различные методы. К основным методам моделирования случайных чисел с заданным законом распределения относятся:

- метод обратной функции

- метод отбора или исключения

- метод композиции.

2. Метод обратной функции

Если ζ- равномерно-распределенная на интервале [0,1] случайная величина, то искомая случайная величина может быть получена с помощью преобразования:

η=F-1 ( ζ) (3)

Где F-1 ( ζ) - обратная функция по отношению к функции распределения F( ζ)

F ( y )

1

ζ


0 η y

Рис 1 Функция распределения F (ζ)

Действительно, при таком определении случайной величины η имеем:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 245
Бесплатно скачать Лабораторная работа: Моделирование датчиков случайных чисел с заданным законом распределения