Лабораторная работа: Моделирование датчиков случайных чисел с заданным законом распределения

Исследование, проводимое в данной работе, заключается в получении программного датчика случайных чисел, пригодного для моделирования случайной последовательности с заданным законом распределения. При этом необходимо разработать алгоритм и программу датчика, а затем исследовать свойства выработанной им последовательности. При проведении исследований необходимо:

1 .По двадцати числам (n =20 ) выведенным на печать построить статистическую функцию распределения F *( y )(рис.10) На этом же графике построить интегральную функцию распределения F ( y ) для заданного преподавателем закона распределения. Сопоставив значения F *( yF ( y ), вычислить статистику Ди (30).

2. Составить блок- схему и программу для ПЭВМ , в которой следует предусмотреть построение статистического ряда и вычисление статистики Ди по критерию Колмогорова.

3 .По таблице пороговых значений статистики Ди произвести оценку распределения.

4. Для полученной последовательности произвести оценку математического ожидания, дисперсии, среднеквадратического отклонения.


Блок- схема генератора


Интерфейс программы:

Листинг программы :

Private Sub Command1_Click()

Dim n As Integer

Dim p1, p2 As Integer

Dim Y() As Variant, X As Double

p1 = 0: p2 = 0: m = 0: d = 0

List1.Clear

Randomize

X = 0.5

n = Val(Text1.Text)

ReDim Y(n) As Variant

For i = 1 To n

X = Rnd(X)

List1.AddItem ("x(" + Str(i) + ")=" + Str(X))

If X < 0.7 Then

p1 = p1 + 1

Y(i) = 2

m = m + Y(i)

List1.AddItem ("y(" + Str(i) + ")=" + Str(Y(i)))

Else

p2 = p2 + 1

К-во Просмотров: 248
Бесплатно скачать Лабораторная работа: Моделирование датчиков случайных чисел с заданным законом распределения