Научная работа: Разбиение натурального ряда

но - противоречие

3. Если ,то про ничего определенного нельзя сказать.

Примеры

§2 Две последовательности. Их свойства

В этом параграфе речь пойдет о задачах, посвященных разбиению натурального ряда на последовательности и о теореме, доказывающей их.

Рассмотрим один из способов разбиения натурального ряда на две возрастающие непересекающиеся последовательности

и

которые при любом натуральном n удовлетворяют условию .

Двигаясь по натуральному ряду, можем последовательно вычислять члены обеих последовательностей.

Поскольку все , то наименьшее натуральное число, т.е. 1- должно равняться .

Следовательно

и так далее. Каждый раз, выбирая наименьшее неиспользованное натуральное число и считая его равным , затем, находя по формуле

можем строить последовательности.

В 1877 году в «Теории звука» лорд Рэлей писал: «если x есть некоторое положительное иррациональное число, меньшее единицы, то можно взять два ряда величин n/x и n/(x-1) где n = 1,2,3…; каждое число, принадлежащее к тому или иному ряду, и только оно одно, будет заключено между двумя последовательными натуральными числами”. Т.е.

и

заполняют без пропусков и перекрытий весь натуральный ряд, если

0<x<1 и xQ

Гипотеза Акулича и явные формулы

И.Ф. Акулич предложил гипотезу: отношение количества a-чисел к количеству b-чисел стремится к «золотому сечению»

(где a-числа – числа, принадлежащие последовательности , b-числа- числа, принадлежащие последовательности ).

[(1+)n/2]

=[(1+)n/2]+n=[(3+)n/2]

Выведем из явных формул гипотезу Акулича.

Обозначим

К-во Просмотров: 359
Бесплатно скачать Научная работа: Разбиение натурального ряда