Реферат: Абстрактно-дедуктивный метод введения и формирования математических понятий в 10-11 классах

Номинальные и реальные определения. Все определения, которые применяются в математике и других науках, делятся на номинальные и реальные, в зависимости от того, что определяется - знаковое выражение (термин, символ) или реальный объект, обозначаемый им.С помощью номинального определения вводится новый термин, символ или выражение как сокращения для более сложных выражений из ранее введенных терминов или символов, или уточняется значение уже введенного термина или символа. Номинальные определения являются средством обогащения языка науки и уточнения семантики его выражений (“Квадратным корнем из неотрицательного числа а называется такое неотрицательное число х, что х2 = а”).

С помощью реальных определений фиксируются характеристические свойства самих определяемых объектов. Деление определений на номинальные и реальные не связано с их формальной структурой. Одно и то же определение можно представить и как номинальное, и как реальное. Например, пусть дано реальное определение: «Пятиугольник – есть плоская геометрическая фигура, ограниченная пятью сторонами». Это же определение можно переформулировать как номинальное: «Пятиугольником называется плоская геометрическая фигура, ограниченная пятью сторонами».

Контекстуальные и индуктивные определения. В математике начальных классов часто применяются контекстуальные определения, в которых определение нового неизвестного термина, понятия выясняется из смысла прочитанного, сводится к указанию содержащих его контекстов («больше», «меньше», «равно»).

Индуктивными называются определения, которые позволяют из сходных объектов (теории) путем применения к ним конкретных операций получать новые объекты. Например, по индукции вводит c я определение натурального числа в математике.

Аксиоматические определения. Если определения исходных понятий даются посредством исходных понятий некоторой теории через ее аксиомы, то это аксиоматические определения. При аксиоматическом построении математической теории некоторые понятия остаются неопределенными (например, точка, плоскость и расстояние в аксиоматике А.Н. Колмогорова). Определением этих понятий можно считать систему аксиом, описывающих их свойства.

Определения через род и видовые отличия. Классическими определениями называются определения через род и видовое отличие. Их можно рассматривать как частный вид номинальных определений. В них определяемое выделяется из предметов некоторой области, которая при этом явно упоминается в определении (род), путем указания характеристического свойства определяемого (видовое отличие). Например:

«Квадрат - прямоугольник с равными сторонами».

«Ромб - параллелограмм, у которого все стороны равны».

«Параллелограммом называется четырехугольник, противоположные стороны которого параллельны».

«Прямоугольник есть параллелограмм с прямым углом».

Общая схема определения “через ближайший род и видовое отличие” может быть записана на языке множеств (классов):

B = { x / x € A и P (x) }

(класс B состоит из объектов x, принадлежащих A - ближайшему роду и обладающих свойством P - видовое отличие) или на языке свойств:

x € B <=> x € A и P (x), или B (x) <=> A (x) и P(x)

(объект x обладает свойством В тогда и только тогда, когда он обладает свойством А и свойством Р).

В школьном курсе математике определения через род и видовое отличие: Длина ломаной. Периметр многоугольника (прямоугольника, квадрата). Квадрат. Куб. Круг. Радиус окружности (круга). Биссектриса угла. Развернутый угол. Прямой угол. Градус. Острый угол. Тупой угол. Виды треугольников по величине углов. Фигуры, симметричные относительно точки (центр симметрии). Перпендикулярные и параллельные прямые.

Генетические определения. Широкое распространение в школьном курсе математики получили генетические (конструктивные) определения, т.е. такие определения, в которых описывается или указывается способ его происхождения, образования, возникновения, построения. Генетические определения представляют собой разновидность определения через род и видовые отличия.

Например: «Сферой называется поверхность, полученная вращением полуокружности вокруг своего диаметра»; «Шар – это геометрическое тело, образованное вращением полуокружности вокруг диаметра».

Анализируя школьный курс математики, можно выделить следующие генетические определения понятий: Отрезок. Луч. Равносторонний треугольник. Координатный луч. Равные фигуры. Площадь прямоугольника. Площадь квадрата. Объем прямоугольного параллелепипеда. Окружность. Дуга окружности. Сектор. Угол и его элементы. Равные углы. Длина окружности. Площадь круга.

Определение через абстракцию. Определения, связанные с выделением такого типа объектов через установление между ними отношений равенства, равнозначности, тождества, получили название определений через абстракцию. В таком определении данное математическое понятие определяется как семейство классов эквивалентности по некоторому отношению эквивалентности. Например, натуральное число n - это характеристика класса эквивалентных конечных множеств, состоящих из n элементов.

Остенсивные определения - определения значений слов путем непосредственного показа, демонстрации предметов. Часто применяются в начальной школе (понятия отрезка, окружности, угла и др.). Постепенно с развитием математического опыта и накоплением определенного числа понятий на смену остенсивным понятиям приходят вербальные понятия. Вербальные понятия – это понятия, когда значения неизвестных выражений определяются через выражения, значения которых известны.

Определение называется корректным, если выполняются два условия:

а) отсутствует порочный круг и связанная с ним возможность исключения нововведенных терминов (“Решение уравнения - это то число, которое является его решением”);

б) отсутствует омонимия: каждый термин встречается не более одного раза в качестве определяемого.

Доказательство теоремы состоит в том, чтобы показать, что если выполняется условие, то из него логически следует заключение, т. е., приняв, что P истинно, в соответствии с правилами вывода показать, что G истинно, и тем самым получить возможность утвердить, что данное высказывание (теорема) истинно в целом.

Доказательство включает в себя три основных элемента:

1. Тезис (главная цель доказательства - установить истинность тезиса). Форма выражения тезиса - суждение.

2. Аргументы (основания) доказательства - положения, на которые опирается доказательство и из которых при условии их истинности необходимо следует истинность доказываемого тезиса. Форма выражения аргументов - суждения. Связывая аргументы, приходим к умозаключению, которые строятся по определенным правилам. Аргументы, на которые можно опереться при доказательстве: аксиомы, определения, ранее доказанные теоремы.

3. Демонстрация - логический процесс взаимосвязи суждений, в результате которого осуществляется переход от аргументов к тезису.

К-во Просмотров: 342
Бесплатно скачать Реферат: Абстрактно-дедуктивный метод введения и формирования математических понятий в 10-11 классах