Реферат: Адаптивное параметрическое оценивание квадратно-корневыми информационными алгоритмами

Информационным массивом ККИФ является массив данных . Он соотносится с оценкой состояния фильтра Калмана и матрицей ковариации ошибки оценивания следующими соотношениями:

(2.1.14)

(2.1.15)


2.2. Функция правдоподобия и ее представление терминах ККИФ


Для эффективного вычисления функции максимального правдоподобия при использовании ККИФ в фильтрации данных, необходимо выразить величины, входящие в выражение для , непосредственно через значения, которые вычисляются ККИФ-ом. Таким образом, две части (2.1.3):

(часть, зависящая от данных) (2.2.1)

(часть, зависящая от модели) (2.2.2)

выраженные через переменные, входящие в формулы ККИФ (2.1.10) и (2.1.13), приобретают следующий вид:

(2.2.3)

(2.2.4)

Доказательство (2.2.3) основано на следующем уравнении:

,

где - ортогональное преобразование такое, что матрица - верхнетреугольная. Находя нормы от обеих частей равенства, получим:

Уравнение (2.1.14) влечет за собой, следующее выражение:

Следовательно:

Далее, используя (2.1.8), чтобы переписать данное выражение в следующем виде:

После раскрытия скобок, опять используя уравнение (2.1.14), имеем:

Далее следует:

(2.2.5)

Наконец, используя (2.1.4), (2.1.5) и (2.1.15), получаем, что матрица, находящаяся внутри квадратных скобках выражения (2.2.5), является просто матрицей , что и доказывает (2.2.3).

Доказательство (2.2.4) основано на существовании ортогональных преобразований между определенными переменными ККИФ и остаточной ковариационной матрицей. Для упрощения записи положим, что

и

Используя обычную матричную алгебру и уравнения (2.1.4), (2.1.5), (2.1.6) и (2.1.15) можно показать, что выполняется следующее равенство:

К-во Просмотров: 609
Бесплатно скачать Реферат: Адаптивное параметрическое оценивание квадратно-корневыми информационными алгоритмами