Реферат: Адаптивное параметрическое оценивание квадратно-корневыми информационными алгоритмами
Информационным массивом ККИФ является массив данных . Он соотносится с оценкой состояния фильтра Калмана и матрицей ковариации ошибки оценивания следующими соотношениями:
(2.1.14)
(2.1.15)
2.2. Функция правдоподобия и ее представление терминах ККИФ
Для эффективного вычисления функции максимального правдоподобия при использовании ККИФ в фильтрации данных, необходимо выразить величины, входящие в выражение для , непосредственно через значения, которые вычисляются ККИФ-ом. Таким образом, две части (2.1.3):
(часть, зависящая от данных) (2.2.1)
(часть, зависящая от модели) (2.2.2)
выраженные через переменные, входящие в формулы ККИФ (2.1.10) и (2.1.13), приобретают следующий вид:
(2.2.3)
(2.2.4)
Доказательство (2.2.3) основано на следующем уравнении:
,
где - ортогональное преобразование такое, что матрица - верхнетреугольная. Находя нормы от обеих частей равенства, получим:
Уравнение (2.1.14) влечет за собой, следующее выражение:
Следовательно:
Далее, используя (2.1.8), чтобы переписать данное выражение в следующем виде:
После раскрытия скобок, опять используя уравнение (2.1.14), имеем:
Далее следует:
(2.2.5)
Наконец, используя (2.1.4), (2.1.5) и (2.1.15), получаем, что матрица, находящаяся внутри квадратных скобках выражения (2.2.5), является просто матрицей , что и доказывает (2.2.3).
Доказательство (2.2.4) основано на существовании ортогональных преобразований между определенными переменными ККИФ и остаточной ковариационной матрицей. Для упрощения записи положим, что
и
Используя обычную матричную алгебру и уравнения (2.1.4), (2.1.5), (2.1.6) и (2.1.15) можно показать, что выполняется следующее равенство: