Реферат: Алгебраическое и графическое решение уравнений, содержащих модули
значений модуля
Теперь можно рассуждать также, как и в примере 1, когда в правой части равенства находилось положительной число. Получим две смешанных системы:
(1) и (2)
Решим каждую систему:
(1) входит в промежуток и является корнем уравнения.
(2) x = -3 не входит в промежуток и не является корнем уравнения.
Ответ:
2-й способ
Установим, при каких значениях x модуль в левой части уравнения обращается в нуль:
Получим два промежутка, на каждом из которых решим данное уравнение (см. рис. 12):
Рис. 12
В результате будем иметь совокупность смешанных систем:
Решая полученные системы, находим:
(1) входит в промежуток и является корнем уравнения.
(2) не входит в промежуток и x=-3 не является корнем уравнения
Ответ:
4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами этих чисел.
Помимо приведенных мною выше способов существует определенная равносильность, между числами и модулями данных чисел, а также между квадратами и модулями данных чисел:
|a|=|b| a=b или a=-b
a2=b2 a=b или a=-b (1)
Отсюда в свою очередь получим, что
|a|=|b| a2=b2
(2)
Пример 4. Решим уравнение |x + 1|=|2x – 5| двумя различными способами.
1.Учитывая соотношение (1), получим:
x + 1=2x – 5 или x + 1=-2x + 5
x – 2x=-5 – 1 x + 2x=5 – 1
-x=-6|(:1) 3x=4