Реферат: Алгоритмы вывода кинетических уравнений для стационарных и квазистационарных процессов
где Di = , DM = D
Из (50) и (52) получаем также
(53)
В случае некаталитических реакций концентрация Xi запишется через концентрацию нуль-вещества в нуль-вершине графа
(54)
Если все [Xi] в каталитической реакции выразить через [М], получим выражение для суммарной концентрации катализатора
(55)
(56)
Из (52) и (56) получаем
(57)
В гетерогенных процессах при нормировке всех Xi к [Х]S (выражение [Xi] через доли поверхности ) получаем
(58)
Есть два способа учесть наличие висячих вершин в материальном балансе по катализатору. Найдя корневые определители для висячих вершин, их следует включить в , тогда [М]S будет включать и соединения, находящиеся в висячих вершинах. Поскольку ребра графа, инцидентные висячим вершинам, в случае стационарных и квазистационарных процессов являются равновесными стадиями, можно ввести дополнительную функцию – закомплексованность интермедиата (любой вершины циклического графа)
(59)
где [XS] – концентрация соединения в висячей вершине графа, связанной с графом стадией S, wS и w–S – веса стадии, инцидентной висячей вершине и направленной от Xi к XS. Очевидно, что отношение включает константу равновесия KS и концентрации участников реакции, входящие в wS и w–S. Так, для вершины М в графе КГ4 получим
Формула (57) может быть модифицирована, поскольку ,
(60)
По уравнению стационарности стадий легко установить связь скорости стадии со скоростью по маршруту, и таким образом найти RP . При отсутствии висячих вершин Fi = 1.
Другой алгоритм был предложен Волькенштейном и Гольдштейном и модифицирован Яблонским и сотрудниками. На графе многомаршрутной реакции выбирается стадия, принадлежащая одному из маршрутов (Wj = RP ), и скорость этой стадии записывается уравнением (64)
, (64)
(или через SFi Di для случая с висячими вершинами)
где – вес n-ого цикла по маршруту Р, включающего стадию j, Dpn – определитель подграфа, получающегося при сжатии n-ого цикла по маршруту Р в одну вершину с корнем в полученной при сжатии вершине, К – число циклов, проходящих через стадию j.
Если скорость по маршруту Р описывается комбинацией скоростей стадий Wj , то уравнение (64) записывается для всех стадий.
Пример 8. Рассмотрим КГ5. Из графа видно, что базис маршрутов включает два маршрута (два простых цикла). Выберем эти простые циклы в качестве базиса. Первый маршрут включает стадии 1 и 2, второй – 1, 3, 4. Из КГ5 с очевидностью следует, что W2 = R1 и W4 = R2 . Естественно, что и W3 = R2 , но для упрощения вывода возьмем необратимую стадию 4. По второму алгоритму запишем величины циклов Сpn .
;
(= 0);