Реферат: Аналитическая теория чисел. L-функция Дирихле

Где m0 , m1 целые числа.

Из определения 1.2. видно, что функция зависит от параметров т0 и m1 является периодической по m0 и m1 , с периодами соответственно 2 и 2α-2 т. е. существует, вообще говоря, φ(k), =< φ(kα ) характеров по модулю k= 2α , которые получаются, если брать m0 , равным 0, 1, а m1 равным 0, 1, ..., 2α-2 - 1.

Ввиду того, что индекс числа или система индексов числа периодические с периодом, равным модулю функции, аддитивные, т. е. индекс произведения (соответственно система индексов произведения) равняется сумме индексов сомножителей (соответственно сумме систем индексов сомножителей), получаем следующие свойства характера χ (п):

1. по модулю k— периодическая с периодом k функция, т. е.

;


2. —мультипликативная функция, т. е.

Очевидно также, что

χ(1) = 1.

L-ряды Дирихле — функции комплексного переменного, подобные дзета-функции Римана, введены Дирихле при исследовании вопроса о распределении простых чисел в арифметических прогрессиях. Везде ниже под L-рядом будем понимать L-ряд Дирихле.

Пусть k— натуральное число и χ — какой-либо характер по модулю k.

Определение 1.3. L-функцией называется ряд Дирихле вида:

Ввиду того, что|χ(n)|≤1, следует аналитичность L(s, χ) в полуплоскости Res>l. Для L(s, χ) имеет место аналог формулы Эйлера (эйлеровское произведение).

Лемма 1.1. При Res > 1 справедливо равенство

Доказательство. При X > 1 рассмотрим функцию

Так как Res > 1, то

следовательно,

(воспользовались мультипликативностью χ(n) и однозначностью разложения натуральных чисел на простые сомножители). Далее,

где σ=Res>l. Переходя в (2) к пределу Х→+∞, получим утверждение леммы.

Из (1) находим

т. е. L(s, χ)≠0 при Res>l. Если характер χ по модулю kявляется главным, то L(s, χ) лишь простым множителем отличается от дзета-функции ζ(s).

К-во Просмотров: 405
Бесплатно скачать Реферат: Аналитическая теория чисел. L-функция Дирихле