Реферат: Аналитическая теория чисел. L-функция Дирихле

где x > 0, α — вещественное.

Имеем

что доказывает равенство (6).

Чтобы доказать равенство (7), продифференцируем почленно (8) и заменим x на х/к, α на m/k (указанные ряды можно почленно дифференцировать, так как получающиеся после этого ряды равномерно сходятся). Получим

Отсюда, как и выше, выводим

Лемма доказана.

§3. Аналитическое продолжение L -функции Дирихле на комплексную плоскость

Получим аналитическое продолжение функции L(s, χ) в область Res >0.

Лемма 3.1.Пусть χ(n) – неглавный характер по модулю m,

Тогда при Res > 1 справедливо равенство

Доказательство. Пусть N≥1, Res >1 . Применяя частное суммирование, будем иметь

Где c(x)=S(x)-1. Так как |c(x)|≤x , то, переходя к пределу N, получим

Что и требовалось доказать.


§4. Функциональное уравнение для L -функции Дирихле. Тривиальные нули L -функции Дирихле

Теорема 4.1. (функциональное уравнение). Пусть χ— примитивный характер по модулю k,

Тогда справедливо равенство

К-во Просмотров: 399
Бесплатно скачать Реферат: Аналитическая теория чисел. L-функция Дирихле