Реферат: Аналитическая теория чисел. L-функция Дирихле
Доказательство, по—существу, повторяет вывод функционального уравнения для дзета-функции (теорема 1, IV).
Предположим, что χ(-1)=+1. Имеем
Умножая последнее равенство на χ (п) и суммируя по п, при Res > 1 получим
Ввиду того, что χ — четный характер, имеем
Разбивая последний интеграл на два, производя в одном из них замену переменной интегрирования (х → 1/х) и пользуясь (6), найдем
Правая часть этого равенства является аналитической функцией при любом sи, следовательно, дает аналитическое продолжение L(s, χ) на всю s-плоскость. Так как Г(s/2)≠0, то L(s, χ) — регулярная всюду функция. Далее, при замене s на 1 — s и χ на , правая часть (10) умножается на , так как χ(— 1)=1 и, следовательно, τ(χ) τ()= τ(χ) = k. Отсюда получаем утверждение теоремы при δ = 0.
Предположим, что χ(—1) = —1. Имеем
Следовательно, при Res > 1
Последнее равенство дает регулярное продолжение L(s, χ) на всю s-плоскость; правая часть его при замене s на 1 — s и χ на, умножается на iввиду того, что
τ(χ) τ()= —k.
Отсюда получаем утверждение теоремы при δ = 1. Теорема доказана.
Следствие. L(s, χ) — целая функция; если χ (—1) = +1, то единственными нулями L(s, χ) при Res≤ 0 являются полюсы Г , т. е. точки s = 0, —2, —4, ...;
если χ (—1) = —1, то единственными нулями L(s, χ) приRes≤ 0 являются полюсы Г т. е. точки s = —1, —3, —5, .. .
дирихле тривиальный вейерштрасс риман
§5. Нетривиальные нули L -функции Дирихле
Тривиальные нули L-функции Дирихле
ξ(s, χ) — целая функция; если χ (—1) = +1, то единственными нулями L(s, χ) при Res≤0 являются полюсы ,т. е. точки s =0, —2. —4, ...; если χ (—1) = —1, то единственными нулями L(s, χ) при Res≤0 являются полюсы т.е. точки s = —1,-3, -5, .. .
5.1 Теорема Вейерштрасса о разложении в произведение целых функций
Теорема 5.1 . Пусть a1 , ..., ап , ... — бесконечная последовательность комплексных чисел, причем
0< |a1 | ≤ |a1 | ≤...≤|аn |<...
И lim= 0.