Реферат: Анализ случайных процессов в линейных системах радиоэлектронных следящих систем
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра РТС
РЕФЕРАТ
На тему:
"Анализ случайных процессов в линейных системах радиоэлектронных следящих систем"
МИНСК, 2008
Определение статистических характеристик случайных процессов в линейных системах
Задающее воздействие и внутренние возмущения (флуктуации частоты, фазы, задержки) являются случайными процессами с нормальным законом распределения, который не изменяется при прохождении процессов через линейные цепи. Флюктуационная составляющая напряжения на выходе дискриминатора (t) также процесс случайный, и хотя не всегда имеет нормальный закон распределения, но при прохождении через последующие узкополосные линейные цепи нормализуется.
Случайный процесс с нормальным законом распределения определяется математическим ожиданием и корреляционной функцией. Методы определения математического ожидания рассмотрены в предыдущем разделе. Рассмотрим методы определения корреляционной функции и связанной с ней дисперсией случайных процессов.
Спектральная плотность процесса на выходе и входе линейной системы связаны зависимостью
,
где - частотная передаточная функция системы;
- спектральная плотность процесса на входе.
Преобразовав по Фурье правую и левую часть можно определить корреляционную функцию:
.
Дисперсия случайного процесса на выходе линейной системы:
(1)
или:
, (2)
где Sv(w) –двусторонняя спектральная плотность процесса на выходе системы.
При использовании односторонней спектральной плотности N(f) выражение (2) может быть записано в виде:
,
где ; .
Расчет дисперсии случайного процесса с помощью стандартных интегралов
Для упрощения вычисления интеграла (6.1) его приводят к стандартному виду:
,
где ─ полином четной степени частоты;
- полином, корни которого принадлежат верхней полуплоскости комплексной переменной; n – степень полинома.
Вычисление производят по формулам:
; ; .
--> ЧИТАТЬ ПОЛНОСТЬЮ <--