Реферат: Аппроксимация непрерывных функций многочленами

Рассмотрим систему вещественных непрерывных функций f1 (x),f2 (x)...fn (x) в конечном или бесконечном интервале [a,b], которая удовлетворяет условиям Хаара: единственность полинома наименьшего уклонения для каждой функции f(P) будет тогда и только тогда, когда каждый полином F(P,x)0 имеет в ограниченном замкнутом точечном множестве не более n-1 различных нулей.

Такую систему называют системой Чебышева относительно интервала [a,b].

Лемма: Пусть x1 ,x2 ...xn-1 произвольно взятые различные точки из интервала [a,b]. В таком случае существует (и с точностью до постоянного множителя только 1) нетривиальный полином , который имеет своими нулями следующие точки:

Других нулей у этого полинома нет, и, если т. xk лежит внутри [a,b], то при переходе через неё полином F(x,) меняет знак.

Обобщение: Если S- есть система Чебышева относительно интервала [a,b], а f(x)- произвольная непрерывная в [a,b] вещественная функция, то полином F(x,), который в метрике С наименее уклоняется в [a,b] от f(x) вполне определяется тем, что разность принимает с чередующимися знаками своё максимальное значение по крайней мере в n+1 последовательных точках интервала [a,b].

Теперь мы можем рассматривать функции в произвольных нормированных пространствах.

III. Методы аппроксимации

3.1 Приближение функций многочленами.

Алгебраическим многочленом степени n называется функция - действительные числа, называемые коэффициентами.

Алгебраические многочлены являются простейшими функциями. Они непрерывны при любом x. Производная многочлена- так же многочлен, степень которого на единицу меньше степени исходного. Так, если степень n, то .

В школьном курсе математики рассматриваются функции f(x)=ax , f(x)=loga x, f(x)=sin(x) и др., изучаются их свойства, строятся графики. Однако вопрос о методах вычисления значений названных функций при заданных значениях аргумента не рассматривается. Вместе с тем, он очень важен. Познакомимся с методами приближения функций, или методами аппроксимации.

3.2 Формула Тейлора.

Рассмотрим функцию y=f(x), определённой на некотором промежутке, содержащим т.а. Предположим, что эта функция имеет производные (n+1)-го порядка.

Уравнение касательной к графику функции в т. х=а имеет вид: .

Многочлен 1-й степени: в т. х=а совпадает со значением f(x) в этой точке: P1 (a)=f(a). Многочлен в т. х=а имеет то же значение производной, что и функция. Действительно, P1 ’(x)=f’(a), следовательно, P1 ’(а)=f’(a). График многочлена Р1 (х) касается графика функции y=f(x) в т. М0 (а,f’(a)).

Можно найти многочлен 2-й степени, а именно: , который в т. х=а будет иметь с функцией y=f(x) общее значение и одинаковые значения как первых, так и вторых производных. График многочлена Р2 (х) вблизи т. х=а ещё теснее будет прилегать к графику функции y=f(x) по сравнению с графиком многочлена Р1 (х).

Естественно ожидать, что многочлен, имеющий при х=а первые n производных, одинаковых с соответствующими производными функции f(x) в той же точке, при х, близких к а, будет хорошо приближать f(x). В этом случае вместо f(x) можно рассматривать указанный многочлен, а для приближённого вычисления f(x) при заданном х достаточно вычислить его значения при том же х.

Этот многочлен получают в результате решения следующей задачи: для функции f(x), имеющей в окрестности т. х=а производные до порядка n+1 включительно, найти многочлен Рn (x) степени не выше n такой, что Pn (a)=f(a); Pn ’(a)=f’(a); Pn ’’(a)=f’’(a);... Pn (n) (a)=f(n) (a).

Эти равенства означают, что в т. х=а значения многочлена Рn (x) и функции y=f(x), а так же их соответствующих производных совпадают. Многочлен Pn (x) представим в виде: . Коэффициенты определяются, предварительно найдя его производные:

......................................

Подставляя в формулы значения х=а, получим:

...

Из этих равенств находим, что

Получаем искомый многочлен:

.

Обозначим через rn (x) разность между функцией f(x) и многочленом Pn (x).

К-во Просмотров: 320
Бесплатно скачать Реферат: Аппроксимация непрерывных функций многочленами