Реферат: Большое каноническое распределение Гиббса

Для дальнейшего анализа разложим энтропию в степенной ряд по отношению числа частиц N от среднего термодинамического значения , ограничиваясь членами второго порядка. При этом учтем: (см. ф-лу (3.28)). Тогда получим:

Подставляя полученный результат в (7.5), находим:

Учитывая большое число частиц N и, пологая , перейдем от суммирования в последнем выражении к интегралу. Получаем:

(7.6)

Вычислим интеграл в полученном равенстве:

Подставляя полученный результат в (7.6), получаем:

Тогда вычисляя в обеих частях последнего равенства предел при и отбрасывая в правой части сомножители, растущие медленнее, чем , получаем:

(7.6)

Подставляя (7.6) в (7.4), находим:

(7.7)

Выражение (7.7) получило название большого канонического распределения Гиббса. Включая в себя каноническое распределение (6.15) как частный случай, это распределение также содержит распределение по числу частиц. Если , то (7.7) принимает вид (6.15).

Нормировочная сумма:

(7.8)

получила название большой статистической сумы. Эта величина связана с термодинамическим потенциалом посредством соотношения:

(7.9)

При необходимости, используя аппарат макроскопической термодинамики можно осуществить в (7.8) переход к другим переменным. Покажем, что на примере перехода от () и (). Из (7.1) следует:

или и т.д.

Полученные равенства можно рассматривать как термодинамические уравнения относительно химического потенциала, решением которых будет выражение . А учитывая (3.21): , можно исключить и переменную , выражая ее в виде . Тогда для энтропии и, соответственно статистического веса, можно записать:

(7.10)

Аналогичным образом осуществляется пересчет и для других переменных состояния и параметров термодинамической системы.

Как и в рассмотренном ранее каноническом распределении, для большого канонического распределения можно показать, что является чрезвычайно сосредоточенным распределением как по числу частиц N , так и по энергии Е .

Воспользуемся аналогией с выполненным в предыдущей теме расчетом ширины канонического распределения по энергии. Тогда ширина распределения по N рассчитывается на основе дисперсии и оказывается равной

(7.11)

Здесь - макроскопические усреднения концентрации частиц.

Тогда для относительной флуктуации числа частиц, получаем:

К-во Просмотров: 299
Бесплатно скачать Реферат: Большое каноническое распределение Гиббса