Реферат: Большое каноническое распределение Гиббса
Для дальнейшего анализа разложим энтропию в степенной ряд по отношению числа частиц N от среднего термодинамического значения
, ограничиваясь членами второго порядка. При этом учтем:
(см. ф-лу (3.28)). Тогда получим:
Подставляя полученный результат в (7.5), находим:
Учитывая большое число частиц N и, пологая , перейдем от суммирования в последнем выражении к интегралу. Получаем:
(7.6)
Вычислим интеграл в полученном равенстве:
Подставляя полученный результат в (7.6), получаем:
Тогда вычисляя в обеих частях последнего равенства предел при и отбрасывая в правой части сомножители, растущие медленнее, чем
, получаем:
(7.6)
Подставляя (7.6) в (7.4), находим:
(7.7)
Выражение (7.7) получило название большого канонического распределения Гиббса. Включая в себя каноническое распределение (6.15) как частный случай, это распределение также содержит распределение по числу частиц. Если , то (7.7) принимает вид (6.15).
Нормировочная сумма:
(7.8)
получила название большой статистической сумы. Эта величина связана с термодинамическим потенциалом посредством соотношения:
(7.9)
При необходимости, используя аппарат макроскопической термодинамики можно осуществить в (7.8) переход к другим переменным. Покажем, что на примере перехода от () и (
). Из (7.1) следует:
или
и т.д.
Полученные равенства можно рассматривать как термодинамические уравнения относительно химического потенциала, решением которых будет выражение . А учитывая (3.21):
, можно исключить и переменную
, выражая ее в виде
. Тогда для энтропии и, соответственно статистического веса, можно записать:
(7.10)
Аналогичным образом осуществляется пересчет и для других переменных состояния и параметров термодинамической системы.
Как и в рассмотренном ранее каноническом распределении, для большого канонического распределения можно показать, что является чрезвычайно сосредоточенным распределением как по числу частиц N , так и по энергии Е .
Воспользуемся аналогией с выполненным в предыдущей теме расчетом ширины канонического распределения по энергии. Тогда ширина распределения по N рассчитывается на основе дисперсии и оказывается равной
(7.11)
Здесь - макроскопические усреднения концентрации частиц.
Тогда для относительной флуктуации числа частиц, получаем: