Реферат: Численные методы вычисления интегралов

Численные методы вычисления интегралов. Метод Ньютона-Котеса. Метод Гаусса

1. Численные методы вычисления интегралов. Постановка задачи

Решая физические задачи, часто приходится вычислять значения определённых интегралов от функций . Во многих случаях, в виду того, что подлежащий вычислению интеграл не выражается через элементарные функции, прибегают к приближённым численным методам.

Прежде всего, рассмотрим случай, когда - конечный интервал.

В таком случае, как известно, функция является ограниченной, т.е. . В этом случае наиболее часто применяемый численный метод интегрирования состоит в том, что интеграл от заменяется некоторой линейной комбинацией значений в точках :

(1)

Формула (1) называется квадратурной формулой, а коэффициенты - квадратурными коэффициентами или весами, абсциссы - узлами квадратурной формулы.

Методы численного интегрирования классифицируются в зависимости от того, заданы ли значения аргумента через равные промежутки или нет. Так методы Ньютона-Котеса требуют, чтобы значения были заданы с постоянным шагом, а методы Гаусса не налагают такого ограничения. Перейдём к рассмотрению этих методов.

2. Методы Ньютона-Котеса

Пусть различные точки отрезка , служащие узлами интерполяции для некоторой интерполирующей функцию функции . Тогда имеем:

(2)

где - остаточный член. Предположим, что

(3)

причём подобраны так, чтобы все интегралы

(4)

можно вычислить точно. Тогда мы получаем квадратурную формулу

(5)

2.1 Формула трапеций

??????? ??????? ??????? ???????-?????? ???????? ???????????? ??????? ????????. ??????????????? ??????? ????? ??????????????? ?? ??????? ????????, ? ??? ??????, ????? ?? ?????? ??????? ??????? ??????????? ???????? ????????????, ? ?????????? ??????????? (??? 1):

Рис. 1.

а) графический вывод:

Определённый интеграл , как известно, задаёт площадь криволинейной трапеции , поэтому, вписав ломаную в дугу кривой , мы получаем, что площадь криволинейной трапеции можно приближённо вычислить как сумму площадей трапеций:

(6)

Между тем, очевидно, что

(7)

Так как, в методах Ньютона-Котеса, , учитывая (6) получаем:


(8)

или, соединяя подобные члены, имеем:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 435
Бесплатно скачать Реферат: Численные методы вычисления интегралов