Реферат: Численные методы вычисления интегралов
Тогда, подставляя в (23) имеем:
(24)
Отсюда, приравнивая коэффициенты при , справа и слева, получаем систему уравнений:
(25)
Ее решение имеет вид:
(26)
Следовательно, искомая квадратурная формула такова :
.(27)
Ясно, что если нам нужно вычислить интеграл со многими узловыми точками, действуем следующим образом:
а) промежуток интегрирования делим на - равных промежутков и на каждом маленьком промежутке применяем формулу Гаусса с неравноотстоящими узлами (27);
б) полученные результаты складываем.
В случае, когда , оказывается, что узловыми точками при делении отрезка на - частей являются корни соответствующих многочленов Лежандра.
Для вычисления кратных интегралов, их сводят обычно к повторным интегралам, а далее применяют те же самые кубатурные формулы для каждого значения узловых точек, что и в одномерном случае. Однако, надо иметь в виду, что кратные интегралы значительно сложнее вычислять с заданной точностью.
Точность произведённых вычислений зависит от точности аппроксимации подынтегральной функции многочленами.
4. Оценка интегралов
При численном интегрировании наряду с приближёнными формулами представляет также интерес нахождение нижних и верхних границ интегралов. Рассмотрим два метода оценки интегралов:
а) оценка интеграла в случае, когда подинтегральная функция , удовлетворяет условию:
для (28)
б) общий случай.
Рассмотрим интеграл:
(29)
где , . Не умоляя общность, будем считать, что , , тогда (Рис. 1) ясно, что
К Е
N
М
0
Рис. 1
0