Реферат: Численные методы вычисления интегралов

(30)

Очевидно, что

(31)

(32)

Таким образом, для оценки интеграла в случае , имеем:

(33)

если же , неравенство (33) заменяется на обратное.

б) Другой принцип грубой, но зато общей оценки значения интеграла, основан на «монотонности» интеграла. При этом способе подынтегральную функцию приближают снизу и сверху интегрируемыми в замкнутом виде функциями и , т.е.

, (34)


Тогда

(35)

5. Вычисление интегралов методом Монте-Карло

Пусть нам нужно вычислить интеграл:

(36)

В случае, когда методы Ньютона-Котеса и Гаусса работают плохо, приходится обращаться к вероятностным методам случайного поиска. К таким методам относится метод Монте-Карло.

Для вычисления интеграла (36) методом Монте-Карло, заменим переменную интегрирования таким образом, чтобы пределы интегрирования отобразились соответственно в . Для этого нужно воспользоваться преобразованием:

(37)

тогда интеграл (36) принимает вид:

(38)

Для вычисления же интеграла на имеем формулу:

(39)

где - случайные числа, равномерно распределённые на . Таким образом, по методу Монте-Карло, интеграл (36) считается по формуле:


(40)

где - равномерно распределённые случайные числа из промежутка .

Аналогично, для кратных интегралов. Получаем:

(41)

где - случайные точки, равномерно распределённые на квадрате (Здесь знак «» означает декартовое произведение).

В случае, когда область интегрирования является сложным множеством (рис. 6), пользуемся прямоугольником , который описывается вокруг множества . И интеграл по множеству заменяем интегралом по прямоугольнику , который уже умеем вычислять по формуле (41). Замена интеграла по множеству производится соотношением:

(42)

К-во Просмотров: 439
Бесплатно скачать Реферат: Численные методы вычисления интегралов